960 likes | 1.6k Views
Biophysics Student Seminar Series. Introduction to NMR. Application. Solid State NMR. introducing Solid State NMR. Research. Bo Zhao Zimeng Li. Introduction to NMR. Application. Solid State NMR. Research. Introduction to NMR. Introduction to NMR. Physical Origin. Measurement.
E N D
Biophysics Student Seminar Series • Introduction to NMR • Application • Solid State NMR introducingSolid State NMR • Research Bo Zhao Zimeng Li
Introduction to NMR • Application • Solid State NMR • Research
Introduction to NMR • Physical Origin • Measurement
Physical Origin • Rabi (1938) • Spin is internal property of particles • Spin can generate magnetic field • Protons and Neutrons have spin 1/2 Xu, Modern Physics (1993)
Physical Origin • Spin ½ System
Spin ½ System • External field – energy splitting ? Hornak, The Basics of NMR (1997)
Spin ½ System • Internal property • External factor • High Field (1964) • Electron shielding • Spin coupling • Chemical Shift e Chemical Shift Anisotropy Spin coupling p ? 1H [ppm] Shi, NMR Introduction course (2003) Trausch et al., Chemical Physics Letters (2008)
Spin ½ System • Chemical Shift Anisotropy • Dipole-Dipole coupling
Chemical Shift Anisotropy • More shielding -> lower chemical shift. Rossum, Solid State NMR and proteins (2009) J. Duer, Solid State NMR spectroscopy (2002)
Chemical Shift Anisotropy • More shielding -> lower chemical shift. • Dependent on angular orientation More shielded
Spin ½ System • Chemical Shift Anisotropy • Dipole-Dipole Coupling
Dipole-Dipole Coupling • Dipolar coupling causes huge line broadening J. Duer, Solid State NMR spectroscopy (2002)
Spin ½ System • (1952) Purcell and Bloch Equilibrium
Spin ½ System M B0 B1 B1 Equilibrium Equilibrium J. Duer, Solid State NMR spectroscopy (2002)
Spin ½ System M Goldstein, Classical Mechanics
Spin ½ System • Resonance • Maximum signal M M
Introduction to NMR • Physics Origin • Measurement
Measurement • Conventional – Continuous Wave • Modern – Pulse Signal Hornak, The Basics of NMR (1997)
Measurement • Conventional – Continuous Wave • Modern – Pulse Signal Anisotropy of 1H
Measurement Shi, NMR Introduction course (2003)
Introduction to NMR • Application • Solid State NMR • Research
Application • Protein 3D structure and function study at atomic resolution • (1976) R. R. Ernst: Multi dimensional NMR • (1979) K. Wuthrich: Solve protein structure Markley, the Scientists – magazine of life science (2005)
Application • Protein Dynamics/Protein folding intermediates Frank, et al. Nature (2010)
Application • Fast structure determination/recognition of macromolecular compound • Medical Imaging
Application Solution vs. Solid State NMR
Problems • Introduction to NMR • Application • General Techniques • Solid State NMR • MAS-NMR • Research • OS-NMR
Problems with SSNMR • Powder Spectra 13C NMR of glycine Solid Liquid D. Lide, G. W. A. Milne, Handbook of Data on Organic Compounds: Compounds 10001-15600 Cha-Hex. (CRC Press, 1994). Adapted from M. Edén, Concepts in Magnetic Resonance 18A, 24.
Problems with SSNMR • Goal: simplify solid state spectra Adapted from R. Tycko, Annu. Rev. Phys. Chem. 52, 575 (2001).
Solid State NMR • Problems • General Techniques • MAS-NMR • OS-NMR
Separated Local Field • Developed in 1976 • Suppresses 1H-1H and 1H-S coupling • Resolves dilute spins based on chemical environment • Gives dipolar coupling information R. K. Hester, J. L. Ackerman, B. L. Neff, J. S. Waugh, Physical Review Letters 36, 1081 (1976).
Cross Polarization • Hartmann-Hahn Condition • Detailed in 1962 • Between heteroatoms • Same Larmor frequency • Allows for cross relaxation L. W. Jelinski, M. T. Melchior, Applied Spectroscopy Reviews 35, 25 (2004/05/24, 2004).
Cross Relaxation • First published in 1973 • Transfer population information from I to S • Detect off of dilute species • Cleaner spectra • More sensitive Barth-Jan van Rossum: Solid-state NMR and proteins, a pictorial introduction
Solid State NMR • Problems • General Techniques • MAS-NMR • OS-NMR
Magic Angle Spinning Simulating the “tumbling” of molecules http://www.rs2d.com/english/images/protasis/doty/doty.jpg
Magic Angle Spinning • Proposed in 1958 • Coupling dependent on • At magic angle, 54.7356°, equals zero • Spin sample to decouple • 1H-1H coupling ~40kHz
MAS decoupling Static 3.6kHz E. R. Andrew, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 299, 505 (March 18, 1981, 1981).
Solid State NMR • Problems • General Techniques • MAS-NMR • OS-NMR
Oriented Sample NMR Physical Orientation Lipids Replacing “tumbling” with Rf irradiation C. R. Sanders, K. Oxenoid, Biochimica et BiophysicaActa (BBA) - Biomembranes1508, 129 (2000). http://avantilipids.com G. Orädd, G. Lindblom, Magnetic Resonance in Chemistry 42, 123 (2004).
PISEMA • Polarization Inversion Spin Exchange at the Magic Angle • Developed in 1994 • Form of SLF with enhanced sensitivity • Further suppression of 1H- 1H coupling C. H. Wu, A. Ramamoorthy, S. J. Opella, Journal of Magnetic Resonance, Series A 109, 270 (1994).
PISEMA vs SLF SLF Modified SLF PISEMA C. H. Wu, A. Ramamoorthy, S. J. Opella, Journal of Magnetic Resonance, Series A 109, 270 (1994).
Polar Index Slant Angle Wheel D. S. Thiriot, A. A. Nevzorov, S. J. Opella, Protein Sci14, 1064 (Apr, 2005).
PISA Wheel S. Kim, T. A. Cross, Journal of Magnetic Resonance 168, 187 (2004). G. A. Cook, S. J. Opella, Methods Mol Biol637, 263 (2010).
Limitations of PISEMA A. A. Nevzorov, S. J. Opella, Journal of Magnetic Resonance 185, 59 (2007).
SAMMY • Compliments PISEMA • Developed in 2003 • Averages out homonuclear spin-spin interaction • More uniform over wide range linewidths A. A. Nevzorov, S. J. Opella, Journal of Magnetic Resonance 164, 182 (2003).
Limitations of SAMMY A. A. Nevzorov, S. J. Opella, Journal of Magnetic Resonance 185, 59 (2007).
SAMPI4 • Slight modification of SAMMY • Developed in 2007 • Combines pros of PISEMA and SAMMY • Sensitivity of PISEMA • Range of SAMMY • Can be implemented generally A. A. Nevzorov, S. J. Opella, Journal of Magnetic Resonance 185, 59 (2007).
Sensitivity Enhancement • Introduction to NMR • Application • Spectroscopic Assignment • Solid State NMR • Structure Calculations • Research
Sensitivity Enhancement • What is mosaic spread? Reducing the effects of mosaic spread M. J. Duer, Solid-state NMR spectroscopy: principles and applications. (Blackwell Science, 2001). C. R. Sanders, K. Oxenoid, Biochimica et BiophysicaActa (BBA) - Biomembranes1508, 129 (2000).
Sensitivity Enhancement Static Slow diffusion Fast diffusion Uniaxial Diffusion A. A. Nevzorov, The Journal of Physical Chemistry B 115, 15406 (2011/12/29, 2011).