590 likes | 743 Views
Bell Work Wednesday, August 7, 2013. List two acts that will results in a student having a teacher conference. Standard. Congruency postulates, SSS, SAS, ASA, & AAS. Essential Question. How does learning the congruency postulates help me prove that two triangle are congruent?. Closing.
E N D
Bell WorkWednesday, August 7, 2013 List two acts that will results in a student having a teacher conference.
Standard • Congruency postulates, SSS, SAS, ASA, & AAS
Essential Question • How does learning the congruency postulates help me prove that two triangle are congruent?
Closing • See nature by numbers video:http://www.youtube.com/watch?v=kkGeOWYOFoA • Homework Assignment #1 – You saw the video, Nature by Numbers. Submit a picture of something from nature and point out one or several geometric shapes similarly to what you saw in the video. Due: Thursday in class.
F B A C E D The Idea of a Congruence Two geometric figures with exactly the same size and shape.
How much do you need to know. . . . . . about two triangles to prove that they are congruent?
Corresponding Parts • AB DE • BC EF • AC DF • A D • B E • C F B A C E F D You learned that if all six pairs of corresponding parts (sides and angles) are congruent, then the triangles are congruent. ABC DEF
SSS SAS ASA AAS Do you need all six ? NO !
Side-Side-Side (SSS) E B F A D C • AB DE • BC EF • AC DF ABC DEF
Side-Angle-Side (SAS) B E F A C D • AB DE • A D • AC DF ABC DEF included angle
Included Angle The angle between two sides H G I
E Y S Included Angle Name the included angle: YE and ES ES and YS YS and YE E S Y
Angle-Side-Angle (ASA) B E F A C D • A D • AB DE • B E ABC DEF included side
Included Side The side between two angles GI GH HI
E Y S Included Side Name the included side: Y and E E and S S and Y YE ES SY
Angle-Angle-Side (AAS) B E F A C D • A D • B E • BC EF ABC DEF Non-included side
Warning: No SSA Postulate There is no such thing as an SSA postulate! E B F A C D NOT CONGRUENT
Warning: No AAA Postulate There is no such thing as an AAA postulate! E B A C F D NOT CONGRUENT
SSS correspondence • ASA correspondence • SAS correspondence • AAS correspondence • SSA correspondence • AAA correspondence The Congruence Postulates
Name That Postulate (when possible) SAS ASA SSA SSS
Name That Postulate (when possible) AAA ASA SSA SAS
Name That Postulate (when possible) Vertical Angles Reflexive Property SAS SAS Reflexive Property Vertical Angles SSA SAS
HW: Name That Postulate (when possible)
HW: Name That Postulate (when possible)
Let’s Practice ACFE Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: B D For SAS: AF For AAS:
HW Indicate the additional information needed to enable us to apply the specified congruence postulate. For ASA: For SAS: For AAS:
Write a congruence statement for each pair of triangles represented. D B C A E F
1-1A Slide 1 of 2
1-1B Slide 1 of 2
5.6 ASA and AAS
C Y A B X Z Before we start…let’s get a few things straight INCLUDED SIDE
Angle-Side-Angle (ASA) Congruence Postulate A A S S A A Two angles and the INCLUDED side
A A A A S S Angle-Angle-Side (AAS) Congruence Postulate Two Angles and One Side that is NOT included
SSS SAS ASA AAS Your Only Ways To Prove Triangles Are Congruent
Things you can mark on a triangle when they aren’t marked. Overlapping sides are congruent in each triangle by the REFLEXIVE property Alt Int Angles are congruent given parallel lines Vertical Angles are congruent
Ex 1 DEF NLM
D L M F N E Ex 2 What other pair of angles needs to be marked so that the two triangles are congruent by AAS?
D L M F N E Ex 3 What other pair of angles needs to be marked so that the two triangles are congruent by ASA?
G K I H J Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 4 ΔGIH ΔJIK by AAS
B A C D E Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 5 ΔABC ΔEDC by ASA
Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 6 E A C B D ΔACB ΔECD by SAS
Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 7 J K L M ΔJMK ΔLKM by SAS or ASA
Determine if whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible. Ex 8 J T L K V U Not possible
1-2A Slide 2 of 2
1-2B Slide 2 of 2
1-2B Slide 2 of 2
1-2C Slide 2 of 2
(over Lesson 5-5) 1-1A Slide 1 of 2