1 / 27

A WordNet “Detour” to FrameNet

A WordNet “Detour” to FrameNet. Aljoscha Burchardt Katrin Erk Anette Frank* Saarland University, DFKI* Saarbrücken {albu,erk,frank}@coli.uni-sb.de. Motivation. Demand for semantic information access (IE, QA,…) Available resources Large-scale (statistical) parsing systems WordNet(s)

clio
Download Presentation

A WordNet “Detour” to FrameNet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A WordNet “Detour” to FrameNet Aljoscha Burchardt Katrin Erk Anette Frank* Saarland University, DFKI* Saarbrücken {albu,erk,frank}@coli.uni-sb.de

  2. Motivation • Demand for semantic information access (IE, QA,…) • Available resources • Large-scale (statistical) parsing systems • WordNet(s) • Modeling approximate lexical semantics • High coverage • FrameNet, PropBank • Modeling predicate-argument structure • Limited coverage • Aim: Combining methods to arrive at a high coverage, various-depth (lexical) semantic analysis

  3. Outline • FrameNet • Using Frames for NLP applications • Current architecture • Coverage problems • A WordNet detour to FrameNet • First Evaluation • Conclusion and Outlook

  4. FrameNet • Frame Semantics (Fillmore 1976, ...) • Frame: a conceptual structure or prototypical situation • Frame elements (roles): participants of the situation • Frame evoking elements (FEEs; verbs, nouns,…) • Example instances of Statement : • “[He Speaker] speaks [highly Manner] [of you Topic],” she said. • “Did [Dominic Speaker] ever make any comments [regarding Toby Topic] [to you Addressee]?” • Berkeley FrameNet Project • Database of frames for core lexicon of English • Current release: 615 frames, ~ 8000 lexical units (LUs)

  5. Saarbrücken SALSA (II) Project • Manual frame-annotation of part of TIGER corpus • Develop automatic methods for Frame/Role assignment • Study metaphors, multi-word expressions • Study frames in context • Work out logical representation for heuristic inferences • Funded by DFG

  6. Using Frames for NLP applications • LFG-based parsing and syntax-semantics interface • ParGram grammars for German and English (Butt et al. 2002) • Interfaces to statistical frame and role assignment (Baldewein et al. 2004, Erk 2004) • Frame projection from f-structure (XLE transfer, Crouch 2005) • Enriching Semantic Representation • Rule-based refinement of semantic representation • Autom. assignment of SUMO/MILO classes (using WordNet WSD) • Logical Representation and Reasoning • FEF (frame exchange format) • Translation to logic programs (joint work with P. Baumgartner and F. Suchanek, MPI Saarbrücken) • First scenario: RTE Challenge (PASCAL Network)

  7. FEFViewer (by Alexander Koller)

  8. F-Structure string('Jessica Litman is a law professor.'). xcomp(f(0),f(13)). tense(f(0),pres). stmt_type(f(0),declarative). pred(f(0),be). mood(f(0),indicative). dsubj(f(0),f(1)). proper(f(1),name). pred(f(1),'Litman'). num(f(1),sg). mod(f(1),f(4)). proper(f(4),name). pred(f(4),'Jessica'). num(f(4),sg). subj(f(13),f(1)). pred(f(13),professor). num(f(13),sg). mod(f(13),f(16)). det_type(f(13),indef). pred(f(16),law). num(f(16),sg). Semantics Projection frame(s(93),'Education_teaching'). rel(s(93),professor). ont(s(93),s(154)). wn_syn(s(154),'professor#n#1'). sumo_sub(s(154),'Position'). milo_syn(s(154),'Professor'). rel(s(157),law). ont(s(157),s(156)). wn_syn(s(156),'law#n#3'). sumo_sub(s(156),'Proposition'). milo_sub(s(156),'Proposition'). rel(s(166),'Jessica'). ont(s(166),s(165)). sumo_syn(s(165),'Human'). frame(s(168),'People'). person(s(168),s(168)). person(s(168),s(166)). rel(s(168),'Litman'). ont(s(168),s(167)). sumo_syn(s(167),'Human'). FEF Example sslink(f(1),s(168)). sslink(f(4),s(166)). sslink(f(13),s(93)). sslink(f(16),s(157)).

  9. Statistical Frame Assignment-Example- “The Royal Navy servicemen being held captive by Iran are expected to be freed today.” statistical (79,83) Calendric_unit statistical (58,65) Expectation

  10. Statistical Frame Assignment-Issues- Learning statistical frame assignment from annotated FrameNet data • Coverage (often too few examples to learn) • Too little ambiguity • Reason: frame-wise annotation • E.g. have only LU of Birth • 0.7% of the current 8000 LUs ambiguous at all • Baseline for assigning each word its most frequent frame at 93% f-score.

  11. Frame Assignment viaWordNet ”Detour“ • Assign frame(s) on the basis of WordNet related words • Addresses coverage problem • Requires WSD to WordNet • SenseRelate system by Ted Pedersen et al available, alternatively • always take first (most frequent) synset

  12. Frame Assignment via Detour –Example- “The Royal Navy servicemen being held captive by Iran are expected to be freed today.” statistical (79,83) Calendric_unit statistical (58,65) Expectation serviceman#n#1 (16,26) People hold#v#20 (33,37) Containing captive#a#1 (38,45) Prison expect#v#1 (58,66) Expectation free#v#6 (73,78) Emitting,Use_firearm

  13. FN-Detour Algorithm Input: a target word (synset) • Use WordNet Search words = target word, synonyms, antonyms, hypernyms • Look up FrameNet Candidate frames = all frames that list any search word as LUs • Select and return best frame(s) from candidate frames

  14. Detour ExampleStep 1: WordNet Target: serviceman#n#1 serviceman, military man, man, military personnel     => skilled worker, trained worker           => worker               => person, individual, someone, somebody,  mortal, human, soul                   => organism, being                       => living thing, animate thing                           => object, physical object                               => entity                   => causal agent, cause, causal agency                       => entity

  15. Detour ExampleStep 2: Candidate Frames

  16. Detour ExampleStep 3: Weights

  17. Weighting • Factors • WordNet distance of FEE from target word (similarity) • “Spreading factor“, i.e. the number of frames a word evokes • Matching vs. LU lookup (boost)

  18. Special: Matching Frame Names • E.g. Research does not (yet) list the noun researcher as LU • If there is no LU for a given word, Detour system looks for matching frame names • Lower weighting for match

  19. Matching Example • Target: researcher#n#1 research worker, researcher, investigator       => scientist, man of science           => person, individual, someone, somebody,…               => organism, being                   => living thing, animate thing                       => object, physical object                           => entity               => causal agent, cause, causal agency                   => entity

  20. Matching Example (ctd) • Target: researcher#n#1

  21. Evaluation • Problem: no off-hand gold standard • FrameNet data (100.000 annotated instances) • All annotated words are LUs of some frame • Detour not really necessary • Solution: detour-only version of our system must not look up target word

  22. First Evaluation Results(detour-only) Table 1: Frame assignment of detour-only system (FrameNet corpus). 80.000 frame instances (60.000 verb, 20.000 noun, 20.000 adj./adv.)

  23. Inspection of Misses

  24. Recent Evaluation Results(detour-only) • Return best frame(s) condition may be too strict (ambiguity is there) • Take first and second best result frame(s) • Gold standard contained +10% • Number of returned frames rises from 1,3 to 3 • Does the WSD system help? • “Always take first synset” slightly better +4%

  25. Evaluation (full system) • Coverage: 96% • Gold standard in (best) result: 83% • WSD not always optimal • Ambiguity leads to a higher weighting of another frame

  26. Issues • Just to mention: frames only (no roles) • Weighting hand-crafted, improvement possible? • Threshold needed (“Is there a frame that fits?”) • What about German? • Access to GermaNet • Available Perl packages for WordNet 2.0 • WSD system as well • Encoding problems (“Period of transition”) • German FrameNet data not (yet) in Berkeley format • Coverage?

  27. Conclusion and Outlook • Detour via WordNet allows assignment of FrameNet frames in many „unknown“ cases • Still: this is the beginning of a journey • Web interface (link on my HP): http://www.coli.uni-saarland.de/~albu/cgi-bin/FN-Detour.cgi • Student project to • Prepare release • More evaluation • Learning of weighting? • Transfer to German?

More Related