1 / 31

by William Schulz Bechara

14 MARCH 2014. by William Schulz Bechara. Charette/Collins Literature Meeting April 8 th , 2014. Controlling Site Selectivity in C-H Functionalization. Catalyst-based control. Substrate-based control. a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012 , 45 , 936.

clodia
Download Presentation

by William Schulz Bechara

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 14 MARCH 2014 by William Schulz Bechara Charette/Collins Literature Meeting April 8th, 2014

  2. Controlling Site Selectivity in C-H Functionalization Catalyst-based control Substrate-based control a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.

  3. Directing Groups in Substrate-Based Control With Pd Monodentate Bidentate Tridentate a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. c) Colby, D. A.; Tsay, A.-S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. d) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154. e) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.2010, 132, 3965. f) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726. g) Shi Chem. Sci. 2013, 4, 3712.

  4. Catalytic Manifolds in Pd-Catalyzed C-H Functionalization Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.

  5. Jin-Quan Yu • Education : • East China Normal University - Shanghai, China : 1982 - 1987B.Sc. in Chemistry - Top 5% of national examination for admission to SIOC • Shanghai Institute of Organic Chemistry (SIOC) - Shanghai, China : 1987 - 1988Coursework for M.Sc. degree • Guangzhou Institute of Chemistry - Guangzhou, China : 1988 - 1990M.Sc. in Chemistry with S.D. Xiao • University of Cambridge - Cambridge, UK :1994 - 1999Ph.D. in Chemistry with Jonathan Spencer • University of Cambridge - Cambridge, UK :1999 - 2003Junior Research Fellow (JRF) of St. John's College • Harvard University - Cambridge, MA, USA : 2001 - 2002Postdoctoral Fellow, supervisor: E.J. Corey • Academic Positions : • University of Cambridge - Cambridge, UK • Royal Society Research Fellow : 2003 - 2004 • Brandeis University - Waltham, MA, USA • Assistant Professor of Chemistry : 2004 - 2007 • Scripps Research Institute - La Jolla, CA, USA • Associate Professor of Chemistry : 2007 – 2010 • Professor of Chemistry : 2010 – 2012 • Frank and Bertha Hupp Professor of Chemistry : 2012 - present 20 (or 16) years of academic studies!!

  6. Pd(0)-Catalyzed Intermolecular Arylation of C(sp3)-H Bonds Wasa, M.; Engle, K. M.; Yu, J.-Q.J. Am. Chem. Soc.2009, 131, 9886.

  7. Pd(II)-Catalyzed Olefination of C(sp3)-H Bonds Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc.2010, 132, 3680.

  8. Key Features of the Weak Coordinating “N-ArF” DG Auxiliary - Low pKa : Faster deprotonation. Lower pKa is instrumental for the presence of a larger population of the reactive deprotonated amide. - Weak coordination : EWG group coordinated to the N center pushes the hybridization toward a N(sp2) center and weakens the coordination to the Pd center (relative to other N(sp3)). - PES (potential energy surface/DFT studies) of the reaction is slightly flatter in presence of ArF compared to fully H-substituted. Reductive elimination step is slightly more favorable. - Weak coordination has been successfully exploited to control the reactivity and selectivity of Pd-cat. C-H functionalization. Figg, T. M.; Wasa, M.; Yu, J.-Q.; Musaev, D. G.J. Am. Chem. Soc.2013, 135, 14206.

  9. Synthesis of Unnatural Chiral a-Amino Acids Can one apply the Pd(II)-catalyzed C-H activation for the b-functionalization of Alanine based SM?

  10. Synthesis of Unnatural Chiral a-Amino Acids General Limitations - Long reaction time - Di-arylation - Low yields - Different N-Aux for mono- or di-arylation - Racemization - Limited to electron-rich Ar-X - No one-pot di-arylation with 2 different substituents a) Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci.2013, 4, 3906. b) Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Angew. Chem. Int. Ed.2013, 52, 13588. c) Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed.2012, 51, 5188.

  11. Pd-Catalyzed Arylation of Primary C(sp3)-H Bonds  Substituted pyridine ligands can match the weak coordination of the amide auxiliary (CONHArF) a) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216. b) M. Wasa et al., J. Am. Chem. Soc. 2012, 134, 18570.

  12. Pd-Catalyzed Arylation of Primary C(sp3)-H Bonds He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216. *Gram-scale reaction.

  13. Pd-Catalyzed Arylation of Primary C(sp3)-H Bonds He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216. *Gram-scale reaction.

  14. Determination of Enantiomeric Purity He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  15. Pd-Catalyzed Arylation of Secondary C(sp3)-H Bonds • Better yields using electron-donating 2-alkoxylpyridines. • The conformation of the lone pairs on the oxygen atom (in L10) is rigidified to favor p-conjugation with the pyridine ring. a) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216. b) M. Wasa et al., J. Am. Chem. Soc.2012, 134, 18570.

  16. Pd-Catalyzed Arylation of Secondary C(sp3)-H Bonds He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  17. Pd-Catalyzed Arylation of Secondary C(sp3)-H Bonds He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  18. Pd-Catalyzed Arylation of Secondary C(sp3)-H Bonds He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  19. Synthesis of Amino Acids via Sequential C(sp3)–H Arylation in One Pot He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  20. Synthesis of Amino Acids via Sequential C(sp3)–H Arylation in One Pot He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  21. Ligand-Enabled C(sp3)–H Arylation With Heteroaryl Iodides He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  22. Synthesis of N-Fmoc-Protected Unnatural Amino Acid He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  23. C(sp3)–H Olefination of Alanine Derivatives (PdII/Pd0) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  24. Unnatural a–Amino Acid Elaboration He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  25. Crystallography of Primary C(sp3)–H Activation Intermediate He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  26. Crystallography of Secondary C(sp3)–H Activation Intermediate He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  27. Catalytic Reactivity of Intermediates A and B - TFA is required for this transformation, presumably to facilitate the dissociation of one of the pyridine ligands. He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.l Homs, A.; Yu, J.-Q. Science.2014, 343, 1216.

  28. Intramolecular Kinetic Isotope Effect

  29. Proposed Mechanism for Pd(II)/Pd(IV) Catalysis CsF or AgCO3 help scavenge the I from Pd by forming clusters* * M. Wasa et al., J. Am. Chem. Soc.2012, 134, 18570.

  30. Future Work - These rare and valuable C(sp3)–H insertion intermediates (A and B) provide a promising platform for further kinetic and computational study of elementary steps in a well-defined manner.

  31. Thank YouQuestions?

More Related