1 / 17

Chap. 3 Simple Resistive Circuits

Chap. 3 Simple Resistive Circuits. C ontents. 3.1 Resistors in Series 3.2 Resistors in Parallel 3.3 The Voltage-Divider and Current-Divider Circuits 3.4 Voltage Division and Current Division 3.5 Measuring Voltage and Current 3.6 Measuring Resistance—The Wheatstone Bridge

corine
Download Presentation

Chap. 3 Simple Resistive Circuits

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chap.3Simple ResistiveCircuits Contents 3.1 Resistors in Series 3.2 Resistors in Parallel 3.3 The Voltage-Divider and Current-Divider Circuits 3.4 Voltage Division and Current Division 3.5 Measuring Voltage and Current 3.6 Measuring Resistance—The Wheatstone Bridge 3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits Objectives 1. 能分辨電阻器連接之串、並聯方式,並使用其串並聯規則,求得等效電阻值。 2. 了解如何設計簡單的分壓器及分流器電路。 3. 能適時地利用分壓器及分流器來求解簡單的電路。 4. 當安培計加至電路中以測量電流時,能決定其讀值; 當伏特計加至電路中以測量電壓時,也能決定其讀值。 5. 了解如何利用惠斯登電橋來測量電阻值。 6. 了解如何適時的利用△ -Y 等效電路來求解簡單的電路。

  2. 3.1 Resistors in Series Combining Resistors in Series 串聯的電路元件(series-connected circuit elements) 承載著相同的電流。 只要利用KCL就可證明流過的電流是相同的。 KVL

  3. 3.2 Resistors in Parallel Combining Resistors in Parallel 並聯的電路元件(parallel-connected circuit elements): 元件兩端分別接在相同的兩節點,具有相同的電壓。 注意:(a)並非元件並排就是並聯;(b)並非兩端電壓值相同就是並聯。 KCL: Ohm’s law: OR

  4. EX 3.1 Applying Series-Parallel Simplification

  5. 3.3 The Voltage-Divider andCurrent-Divider Circuits KVL & Ohm’s law load Voltage-Divider Circuit 可從一個電壓源獲得一個以上的電壓準位 負載(load): 由一個或多個電路元件所形成,它會取用電路的功率。 若RL>>R2,則不影響vo/vs的比例值。

  6. EX 3.2 Analyzing the Voltage-Divider Circuit The resistors used in the voltage-divider circuit have a tolerance of ±10%. Find the maximum and minimum value of vo.

  7. Current-Divider Circuit Current-Divider Circuit KCL & Ohm’s law EX 3.3 Analyzing a Current-Divider Circuit 分流 分流

  8. 3.4Voltage Division and CurrentDivision Voltage Division Current Division

  9. EX 3.4 Using Voltage Division & Current Division 分流 分壓

  10. 3.5Measuring Voltage and Current Ammeter (安培計):用來測量電流的儀器 和待測電路元件以串聯方式連接;理想的安培計其等效電阻值為0 Ω,如同一個短路和待測電路元件串聯,不會影響待測電路元件的電流值。 In series In parallel short circuit open circuit Voltmeter (伏特計):用來測量電壓的儀器 和待測電路元件以並聯方式連接;理想的伏特計其等效電阻值為 ,如同一個開路和待測電路元件並聯,不會影響待測電路元件的電壓值。

  11. Digital meters & Analog meters Digital Meters (數位電錶):以離散方式測量連續電壓或電流的裝置。 在某時間只取一點或稱為取樣時間來測量連續的電壓或是電流信號, 也就是將類比信號(時間是連續的)轉換成數位信號。 Analog Meters (類比電錶):以達松法表頭(d’Arsonval meter movement) 測量讀出連續電壓或電流的裝置。 表頭設計的原則是:指針偏轉的量和通過可轉線圈的電流成正比。線圈可以用電壓及電流值來描述。如商用表頭的額定值為50mV, 1 mA;則代表線圈通過1 mA 電流時,線圈兩端的電壓降為50 mV。 RA: 限制通過表頭的電流量 Rv: 限制跨於表頭線圈兩端的壓降

  12. EX 3.5 Using a d’Arsonval Ammeter 50mV, 1 mA 50  a) Determine RAfora full-scale reading of 10 mA.. b) How much resistance is added to the circuit when the 10 mA ammeter is inserted to measure current? a)  b) OR

  13. EX 3.6 Using a d’Arsonval Voltmeter 50mV, 1 mA 50  a) Determine Rvfora full-scale reading of 150 V. b) How much resistance doesthe 150 V meter insert into the circuit? a)  b) OR

  14. 3.6Measuring Resistance — The Wheatstone Bridge 高電阻所造成漏電流與分支電流量相當時,以及低電阻因熱效應(i2R)造成金屬接觸熱電電壓時,均易使測量結果不準。 Wheatstone Bridge (惠斯登電橋): 用以測量中等電阻值(1Ω 至1MΩ)的一種電路形態,包含一個直流電壓源、一個檢測器及四個電阻器,其中一個電阻器之電阻值是可變的(如圖中的R3),檢測器通常是使用微安範圍的達松法電流計,或稱為微流計/檢流計(galvanometer)。 調整可變電阻器R3,使得微流計沒有電流流過,即 ig = 0 &

  15. 3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits Delta () or Pi ()interconnection Wye (Y) or Tee (T)interconnection Delta-to-Wye (-to-Y) or Pi-to-Tee (-to-T)Transformation

  16. Delta-to-Wye Transformation Delta-to-Wye (-to-Y) or Pi-to-Tee (-to-T)Transformation Proof:   Y Y  

  17. EX 3.7 Applying a Delta-to-Wye Transform

More Related