1 / 21

More advanced aspects of search

More advanced aspects of search. Extensions of A*. Extensions of A*. Iterated deepening A* Simplified Memory-bounded A* . Iterative-deepening A*. f1. A*. d = 1. Breadth- first. f2. d = 2. d = 3. f3. d = 4. f4. Expand by depth-layers. Expands by f-contours.

Download Presentation

More advanced aspects of search

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. More advanced aspects of search Extensions of A*

  2. Extensions of A* Iterated deepening A* Simplified Memory-bounded A*

  3. Iterative-deepening A*

  4. f1 A* d = 1 Breadth- first f2 d = 2 d = 3 f3 d = 4 f4 Expand by depth-layers Expands by f-contours Memory problems with A* • A* is similar to breadth-first: • Here: 2 extensions of A* that improve memory usage.

  5. Depth-first in each f- contour • Perform depth-first search LIMITED to some f-bound. • If goal found: ok. • Else: increase de f-bound and restart. f1 f2 f3 f4 Iterative deepening A* How to establish the f-bounds? - initially: f(S) generate all successors record the minimalf(succ)>f(S) Continue with minimalf(succ) instead of f(S)

  6. f-new = 120 S f=100 A f=120 B f=130 C f=120 D f=140 G f=125 E f=140 F f=125 Example: f-limited, f-bound = 100

  7. f-new = 125 S f=100 A f=120 B f=130 C f=120 D f=140 G f=125 E f=140 F f=125 Example: f-limited, f-bound = 120

  8. S f=100 A f=120 B f=130 C f=120 D f=140 G f=125 E f=140 F f=125 SUCCESS Example: f-limited, f-bound = 125

  9. f-limited search: 1. QUEUE <-- path only containing the root; f-bound <-- <some natural number>; f-new <--  2. WHILEQUEUE is not empty AND goal is not reached DO remove the first path from the QUEUE; create new paths (to all children); reject the new paths with loops; add the new paths with f(path)f-bound to front of QUEUE; f-new <-- minimum of current f-new and of the minimum of new f-values which are larger than f-bound 3. IF goal reached THEN success; ELSE report f-new ;

  10. 1. f-bound <-- f(S) 2. WHILE goal is not reached DO perform f-limited search; f-bound <-- f-new Iterative deepening A*:

  11. Properties of IDA* • Complete and optimal: • under the same conditions as for A* • Memory: • Let be the minimal cost of an arc: • == O( b* (cost(B) /)) • Speed: • depends very strongly on the number of f-contours there are !! • In the worst case: f(p)  f(q) for every 2 paths: • 1 + 2 + ….+ N = O(N2)

  12. In absence of Monotonicity: • we can have search spaces like: 100 S 120 120 A B C D E F 140 150 90 60 • If f can decrease, • how can we be sure that the first goal reached is the optimal one ??? Why is this optimal,even without monotonicity ??

  13. IDA* is one of the very best optimal search techniques ! • Example: the 8-puzzle • But: also for MANY other practical problems • increase f-bound by a fixed number at each iteration: • effects: less re-computations, BUT: optimality is lost: obtained solution can deviate up to  Properties: practical • Ifthere are only a reduced number of different contours: • Else, the gain of the extended f-contour is not sufficient to compensate recalculating the previous • In such cases:

  14. Simplified Memory-bounded A*

  15. If memory is full and we need to generate an extra node (C): • Remove thehighest f-value leaffrom QUEUE(A). • Remember thef-value of the best ‘forgotten’ childin each parent node(15 in S). 13 S 13 15 A B B 18 C memory of 3 nodes only Simplified Memory-bounded A* • Fairly complex algorithm. • Optimizes A* to work within reduced memory. • Key idea: (15)

  16. When expanding a node (S), only add its children 1 at a time to QUEUE. • we use left-to-right • Avoids memory overflow and allows monitoring of whether we need to delete another node 13 S A A B B First add A, later B Generate children 1 by 1

  17. If extending a node would produce a path longer than memory: give up on this path (C). • Set the f-value of the node (C) to  • (to remember that we can’t find a path here) 13 S 13 B B  18 C C D memory of 3 nodes only Too long path: give up

  18. If all children M of a node N have been explored and for all M: • f(S...M)f(S...N) • then reset: • f(S…N)= min { f(S…M) | M child of N} • A path through N needs to go through 1 of its children ! 15 13 S 24 15 A B Adjust f-values better estimate for f(S)

  19. 0+12=12 10 S 8 8+5=13 10+5=15 A B 8 16 10 10 20+0=20 16+2=18 20+5=25 24+0=24 C G1 D G2 8 10 10 8 30+5=35 24+5=29 E G3 30+0=30 G4 F 24+0=24 12 12 12 13 S S S S A A A B A B 13 13 15 15 15 15  D 18 SMA*: an example: 12 13 (15)

  20. 0+12=12 10 S 8 8+5=13 B 10+5=15 A B 13 8 16 10 10 20+0=20 16+2=18 20+5=25 24+0=24 C G1 D G2  8 10 10 8 D 24+0=24 30+5=35 24+5=29 E G3 30+0=30 G4 F (15) 13 (15) 15 15 15 (24) 13 (15) S S S S S 13 B B B B A A A () 15 24 24 24 15 15 G2 G2 G2      C C C G1 D D 24 24 24 25 20 Example: continued 15 (15) (24) 20 13 15 () 13 20 () () 24 15

  21. SMA*: properties: • Complete: If available memory allows to store the shortest path. • Optimal: If available memory allows to store the best path. • Otherwise: returns the best path that fits in memory. • Memory: Uses whatever memory available. • Speed: If enough memory to store entire tree: same as A*

More Related