320 likes | 353 Views
Access to video memory. We create a Linux device-driver that gives applications access to our graphics frame-buffer. The role of a device-driver. A device-driver is a software module that controls a hardware device in response to OS kernel requests
E N D
Access to video memory We create a Linux device-driver that gives applications access to our graphics frame-buffer
The role of a device-driver A device-driver is a software module that controls a hardware device in response to OS kernel requests relayed, often, from an application hardware device i/o memory in out RAM device-driver module user application ret call call ret Operating System kernel syscall standard “runtime” libraries sysret user space kernel space
Raster Display Technology The graphics screen is a two-dimensional array of picture elements (‘pixels’) These pixels are redrawn sequentially, left-to-right, by rows from top to bottom Each pixel’s color is an individually programmable mix of red, green, and blue
Special “dual-ported” memory CRT CPU VRAM RAM 16-MB of VRAM 2048-MB of RAM
How much VRAM is needed? • This depends on (1) the total number of pixels, and on (2) the number of bits-per-pixel • The total number of pixels is determined by the screen’s width and height (measured in pixels) • Example: when our “screen-resolution” is set to 1280-by-960, we are seeing 1,228,800 pixels • The number of bits-per-pixel (“color depth”) is a programmable parameter (varies from 1 to 32) • Certain types of applications also need to use extra VRAM (for multiple displays, or for “special effects” like computer game animations)
How ‘truecolor’ works 24 16 8 0 longword alpha red green blue R G B pixel The intensity of each color-component within a pixel is an 8-bit value
x86 uses “little-endian” order “truecolor” graphics-modes use 4-bytes per picture-element 0 1 2 3 4 5 6 7 8 9 10 VRAM B G R B G R B G R … Video Screen
Some operating system issues • Linux is a “protected-mode” operating system • I/O devices normally are not directly accessible • Linux on x86 platforms uses “virtual memory” • Privileged software must “map” the VRAM • A device-driver module is needed: ‘vram.c’ • We can compile it using: $ mmake vram • Device-node: # mknod /dev/vram c 98 0 • Make it ‘writable’: # chmod a+w /dev/vram
Our ‘vram.c’ module • It’s a character-mode Linux device-driver • It implements four device-file ‘methods’: • ‘read()’: lets a program read from video memory • ‘write()’: lets a program write to video memory • ‘llseek()’: lets a program ‘move’ the file’s pointer • ‘mmap()’: lets a program ‘map’ vram to user-space • It also implements a pseudo-file that lets users view the RADEON X300 graphics controller’s PCI Configuration Space parameter-values: $ cat /proc/vram
What is PCI? • It’s an acronym for “Peripheral Component Interconnect” and refers to a collection of industry standards for devices used in PCs • An Intel-sponsored initiative (from 1992-9) having several ambitious goals: • Reduce diversity inherent in legacy PC devices • Improve speed and efficiency of data-transfers • Eliminate (or reduce) platform dependencies • Simplify adding/removing peripheral adapters • Lower PC’s total consumption of electrical power
PCI Configuration Space A non-volatile parameter-storage area for each PCI device-function PCI Configuration Space Header (16 doublewords – fixed format) PCI Configuration Space Body (48 doublewords – variable format) 64 doublewords
Example: Header Type 0 16 doublewords 31 0 31 0 Dwords Status Register Command Register Device ID Vendor ID 1 - 0 BIST Header Type Latency Timer Cache Line Size Class Code Class/SubClass/ProgIF Revision ID 3 - 2 Base Address 1 Base Address 0 5 - 4 Base Address 3 Base Address 2 7 - 6 Base Address 5 Base Address 4 9 - 8 Subsystem Device ID Subsystem Vendor ID CardBus CIS Pointer 11 - 10 reserved capabilities pointer Expansion ROM Base Address 13 - 12 Maximum Latency Minimum Grant Interrupt Pin Interrupt Line reserved 15 - 14
Examples of VENDOR-IDs • 0x8086 – Intel Corporation • 0x1022 – Advanced Micro Devices, Inc • 0x1002 – Advanced Technologies, Inc • 0x10EC – RealTek, Incorporated • 0x10DE – Nvidia Corporation • 0x10B7 – 3Com Corporation • 0x101C – Western Digital, Inc • 0x1014 – IBM Corporation • 0x0E11 – Compaq Corporation • 0x1057 – Motorola Corporation • 0x106B – Apple Computers, Inc • 0x5333 – Silicon Integrated Systems, Inc
Examples of DEVICE-IDs • 0x5347: ATI RAGE128 SG • 0x4C58: ATI RADEON LX • 0x5950: ATI RS480 • 0x436E: ATI IXP300 SATA • 0x438C: ATI IXP600 IDE • 0x5B60: ATI Radeon X300 See this Linux header-file for lots more examples: </usr/src/linux/include/linux/pci_ids.h>
Defined PCI Class Codes • 0x00: Legacy Device (i.e., built before class-codes were defined) • 0x01: Mass Storage controller • 0x02: Network controller • 0x03: Display controller • 0x04: Multimedia device • 0x05: Memory Controller • 0x06: Bridge device • 0x07: Simple Communications controller • 0x08: Base System peripherals • 0x09: Input device • 0x0A: Docking stations • 0x0B: Processors • 0x0C: Serial Bus controllers • 0x0D: Wireless controllers • 0x0E: Intelligent I/O controllers • 0x0F: Encryption/Decryption controllers • 0x10: Satellite Communications controllers • 0x11: Data Acquisition and Signal Processing controllers
Example of Sub-Class Codes • Class Code 0x01: Mass Storage controller • 0x00: SCSI controller • 0x01: IDE controller • 0x02: Floppy Disk controller • 0x03: IPI controller • 0x04: RAID controller • 0x80: Other Mass Storage controller
Example of Sub-Class Codes • Class Code 0x02: Network controller • 0x00: Ethernet controller • 0x01: Token Ring controller • 0x02: FDDI controller • 0x03: ATM controller • 0x04: ISDN controller • 0x80: Other Network controller
Example of Sub-Class codes • Class Code 0x03: Display Controller • 0x00: VGA-compatible controller • 0x01: XGA controller • 0x02: 3D controller • 0x80: Other display controller
Hardware details may differ • Graphics controllers use vendor-specific mechanisms to perform similar operations • There’s a common core of compatibility with IBM’s VGA (Video Graphics Array) developed in the mid-1980s, but since IBM’s loss of market dominance, each manufacturer has added enhancements which employ incompatible programming interfaces – you need a vendor’s manual!
The ‘frame-buffer’ • Today’s PCI graphics systems all provide a dedicated amount of display memory to control the screen-image’s pixel-coloring • But how much memory will vary with price • And its location within the CPU’s physical address-space can’t be predicted because it depends upon what other PCI devices are installed (and mapped) during startup
The ‘base address’ fields • The PCI Configuration Header has several so-called Base Addess fields, and vendors use one of these to hold the frame-buffer’s starting address and to indicate how much vram the video controller can actually use • The Linux kernel provides driver-writers with some convenient functions for getting the location and size of the frame-buffer
Radeon uses Base Address 0 • Our ‘vram.c’ module’s initialization routine employs these kernel helper-functions: • #include <linux/pci.h> • struct pci_dev *devp; // for a variable that will point to a kernel-structure • // get a pointer to the PCI device’s Linux data-structure • devp = pci_get_device( VENDOR_ID, DEVICE_ID, NULL ); • if ( !devp ) return –ENODEV; // device is not present • // get starting address and length for memory-resource 0 • vram_base = pci_resource_start( devp, 0 ); • vram_size = pci_resource_len( devp, 0 );
Reading from ‘vram’ • You can use our ‘fileview’ utility to see the current contents of the video frame-buffer $ fileview /dev/vram • Our ‘vram.c’ driver’s ‘read()’ method gets invoked when an application-program attempts to ‘read’ from the ‘/dev/vram’ device-file • The read-method is implemented by our driver using ‘ioremap()’ (and ’iounmap()’) to temporarily map a 4KB-page of physical vram to the kernel’s virtual address-space
I/O ‘memcpy()’ functions • Linux provides a ‘platform-independent’ way to do copying from an i/o-device’s memory into an application’s buffer (or vice-versa): • A ‘read’ copies from vram to a user’s buffer memcpy_fromio( buf, vaddr, len ); • A ‘write’ copies to vram from a user’s buffer memcpy_toio( vaddr, buf, len );
‘mmap()’ • This is a standard UNIX system-call that lets an application ‘map’ a file into its virtual address-space, where it can then treat the file as if it were an ordinary array • See the man-page: $ man mmap • This same system-call can also work on a device-file if that device’s driver provided ‘mmap()’ among its file-operations
The user-role • In the application-program, six arguments get passed to the ‘mmap()’ library-function int mmap( (void*)baseaddress, int memorysize, int accessattributes, int flags, int filehandle, int offset );
The driver-role • In the kernel, those six arguments will get validated and processed, then the driver’s ‘mmap()’ callback-function will be invoked to supply missing information and perform further sanity-checks and do appropriate page-mapping actions: int mmap( struct file *file, struct vm_area_struct *vma );
Our driver’s code int mmap( struct file *file, struct vm_area_struct *vma ) { // extract the paramers we will need from the ‘vm_area_struct’ unsigned long region_length = vma->vm_end – vma->vm_start; unsigned long region_origin = vma->vm_pgoff * PAGE_SIZE; unsigned long physical_addr = fb_base + region_origin; unsigned long user_virtaddr = vma->vm_start; // sanity check: mapped region cannot extend past end of vram if ( region_origin + region_length > fb_size ) return –EINVAL; // tell the kernel not to try ‘swapping out’ this region to the disk vma->vm_flags |= VM_RESERVED; // tell the kernel to exclude this region from any core dumps vma->vm_flags |= VM_IO;
Driver’s code continued // invoke a helper-function that will set up the page-table entries if ( remap_pfn_range( vma, user_virtaddr, physical_addr >> 12, region_length, vma->vm_page_prot ) ) return –EAGAIN; return 0; // SUCCESS }
Demo: ‘rotation.cpp’ • This application-program will demonstrate use of our ‘vram.c’ device-driver’s ‘read()’, ‘write()’ and ‘llseek()’ methods (i.e., device-file operations) • It will perform a rotation of the color-components (R,G,B) in every displayed ‘truecolor’ pixel: R G G B B R • After 3 times the screen will look normal again
Demo: ‘inherit.cpp’ • This application-program will demonstrate use of the ‘mmap()’ method in our driver, and the fact that memory-mappings which a parent-process creates will be ‘inherited’ by a ‘child-process’ • You will see a rectangular purple border drawn on your display -- provided the program-parameters match your screen
In-class exercise • Can you adapt the ideas in ‘inherit.cpp’ to create a program (named ‘backward.cpp’) that will reverse the ordering of the pixels in each screen-row? … …