1 / 22

Irradiation Facilities at CERN for RD-51

Explore CERN's irradiation facilities and their role in Research and Development for Micro-Pattern Gas Detectors. Discuss existing facilities, beam tests, material studies, and future upgrades.

czabel
Download Presentation

Irradiation Facilities at CERN for RD-51

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Irradiation Facilities at CERNfor RD-51 Mar CAPEANS CERN Micro-Pattern Gas Detectors (RD-51) Workshop Nikhef, Amsterdam, April 16-18 2008

  2. Detector Development Phase From Prototype to Detector Systems, need several rounds of: • Basic R&D • Lab measurements • Beam tests (performance) • Long-term tests (aging) • Detector material studies (radiation) • Electronics (performance and radiation) • Services validation (cooling, gas, etc) • Final detector aging tests (large area irradiation) • Final detector system tests • Integrated system tests Mar CAPEANS

  3. Outline of this Talk • Existing and Future Irradiation Facilities at CERN • Beam Tests • Generic Aging and Material Studies Effort • Towards an RD-51 Irradiation and Beam Test Programme Mar CAPEANS

  4. Existing CERN Irradiation Facilities Mar CAPEANS

  5. CERN PS East Hall: IRRAD • The irradiation facilities in the PS East Hall belong to the common projects of the CERN PH department • PH-DT (M.Moll and M.Glaser) provides the maintenance and constant upgrade of these facilities as well as dedicated irradiation experiments • The facilities have been heavily used during the LHC R&D phase (in particular innermost detector components – silicon tracking detectors, electronics, materials) • Annual availability ~130 days M.Moll (CERN) Mar CAPEANS

  6. CERN PS East Hall: IRRAD • Three kind of irradiations are provided: • 24 GeV/c proton irradiations • Mixed field (mainly 1 MeV neutrons) • Organization/Coordination of irradiations outside of CERN Mar CAPEANS

  7. CERN Proton Irrad Facility • Beam Energy: 24 GeV/c • Proton flux: 1-5 x1013 p/hour/cm2 • Beam spot: 2 x 2 cm2 • Located in the main beam area • Access on request (beam off everywhere!) • Infrastructure • x-y-z movable tables (max 100 Kg) • Irradiation inside cooled (-20C) and atmosphere controlled (e.g. N2) boxes (max volume 20x20x50 cm3) • Scanning over surfaces up to 20x20 cm2 (according reduction in flux/cm2) M.Glaser, M.Moll Mar CAPEANS

  8. CERN Neutron Irrad Facility • Particle field created by 24 GeV/c p on C/Fe/Pb targets • Mixed field: n, p, p+, p-, g • Neutron flux: 1-3 x107 n/s/cm2 1 MeV (at 50 cm from beam axis) • Std. vol. 20 x 20 x 20 cm3 Mar CAPEANS

  9. CERN Gamma Irradiation Facility (GIF) • 1998: Combination of a gamma source and particle beams • Gamma source Cs137 740GBq (1997) with 662 keV photons, at 50cm 15rad/h • Electron, pion and muon beams 5 to 250 GeV, 106-107 particles/spill from SPS • 2004 - 2009: gamma source (aged), NO particle beam • Nominal Flux: 0.86 x 105 photons/cm2/s at 4 m on axis of the source • 2nd collimated smaller beam providing 4.4 x 106 photons/cm2/s at 1 m • CERN PH/DT facility, technical support by R.Fortin at present Mar CAPEANS

  10. CERN Gamma Irradiation Facility (GIF) • SPS 450 GeV p on Be target: • 10x10 cm2 spot, 100GeV muons, 104 particles/extraction • e- and/or pions on request Large Area Detectors (20 m2) Source (2 collimators) and lead Filters Rate variation up to 4 orders of magnitude Mar CAPEANS

  11. CERN Gamma Irradiation Facility (GIF) • Users: • LHC experiments (mainly gas detectors, calorimeters) • Also PS/SPS experiments, LHC machine • Annual availability ~ all year round • > 190 NIM articles Mar CAPEANS

  12. Examples of Findings at GIF • Validation of Closed-loop Gas Systems (and its filtering elements) for LHC RPC detectors • Characterization of ATLAS Muon MDT: study of detector resolution as function of background rate (gamma source = background, beam = signal) Replaced MDT by CSC chambers Mar CAPEANS

  13. Future CERN Irradiation Facilities • LHC (accelerator and detectors and their electronics) will need more irradiation experimentation with time, as flux (luminosity) increases • SLHC ~ 10 x LHC • LHC detectors/electronics may need available set-ups to perform tests at short-notice • Key for new detector developments Mar CAPEANS

  14. Irradiation Facilities Upgrade Task Force • Goals: • Coordinate the effort CERN wide • Upgrade the facilities according to user requirements • Find common solutions • Questionnaire sent out: http://irradiation-facilities.web.cern.ch/irradiation-facilities/ 140 answers Mar CAPEANS

  15. Irradiation Facilities Upgrade • Trends: • Proton / Gamma / Neutron • Higher rate/dose (SLHC flux) • Large space for large samples and detectors • Dedicated beams • Better and user-friendly infrastructure to minimize set-up time • GIF with or without particle beam? • Dedicated set-ups or temporary installations? • Need input from RD-51 community. Please, click below: http://irradiation-facilities.web.cern.ch/irradiation-facilities/ Mar CAPEANS

  16. RD-51 Beam Test Roadmap Build a permanent RD-51 set-up in SPS line, over few years? • Define subset of RD-51 groups involved in setting up and maintaining the facility, and also in defining the test programme • Build common general infrastructure • Services (gas systems, cooling, HV, LV, cables, etc) • DAQ/Controls/Trigger modules • Analysis SW tools • Access to Magnet • High precision, fast beam telescope • Goals: • Share resources • Minimize effort (keep infrastructure and upgrade it slowly) • Group requests (beam time) • Community building Mar CAPEANS

  17. Aging Test & Materials Studies Effort • Over the next 4 years, CERN will invest some resources on Facilities and Component Analysis for Detector R&D. In addition to the upgrade of irradiation facilities, there is the wish of: • Creating a generic aging facility for gas detectors, building up on the experience and set-ups used during the construction and tests of LHC detectors (e.g. ATLAS TRT) • Start a focused R&D on materials for detector development towards SLHC CERN jargon: White Paper, Theme 3, Workpackage 7 http://ph-dep.web.cern.ch/ph-dep/InfoCommunication/FM/FM15Nov07/Linssen.pdf Mar CAPEANS

  18. Aging Test & Materials Studies Effort • Establish reference procedures and generic facilities suitable for higher rates • Perform tests, on short notice if needed • Identify radiation tolerant and/or outgassing free and/or chemically compatible and/or etc. material lists – in particular for SLHC – and not limited to gas detectors: • Assembly materials (epoxy glues, rigid materials, etc.) • Sensors (slow control, radiation monitors) and complete devices • Fluids (active gases, coolants) and filtering techniques • Produce (limited set of) compilation reports and catalogs Mar CAPEANS

  19. Summary • CERN PH Department is starting an important effort towards upgrading and improving the CERN irradiation and beam test facilities • RD-51, as a collaboration, should get involved, give input, participate and use these facilities in an optimal way • Will require internal organization and a group taking responsibilities for operating these facilities for RD-51 users • Will help significantly in: • developing a real collaboration • creating a certain standard for measurements and qualitative results, going across the entire micro-pattern community Mar CAPEANS

  20. Extra Slides Mar CAPEANS

  21. CERN-EU high-energyReference Field (CERF) facility • 1992 • SPS Secondary beam line (H6) in North Area (Prevessin) • 120 GeV/c hadron beam on Cu-target producing a high-energy mixed radiation field produced by EM and hadronic cascades Mar CAPEANS

  22. CERF Facility • Neutron field (0.1-1 Mev and 10-100 MeV regions) • Dose: 0.02 Gy/h to 10 Gy/h • Users: test of dosimetric instrumentation, benchmark experiments for MC codes (Fluka), material activation studies, LHC beam loss monitors studies , space applications… • Annual availability ~1-2 weeks • Facility used by more than 70 scientists from 50 external institutes (~20 different countries) and various CERN groups (RP, AB, TS,…) • ~ 85 international publications • ~ 60 internal CERN notes Mar CAPEANS

More Related