450 likes | 546 Views
Neutrons and the New Standard Model. M.J. Ramsey-Musolf Wisconsin-Madison. NPAC. Theoretical Nuclear, Particle, Astrophysics & Cosmology. http://www.physics.wisc.edu/groups/particle-theory/. ILL Grenoble, May 2008. Searching for the New SM.
E N D
Neutrons and the New Standard Model M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ ILL Grenoble, May 2008
Searching for the New SM • Can precision measurements and symmetry tests with neutrons make a significant contribution in the search for the “new Standard Model” ? • If so, how does this role complement new particle searches at the LHC or other precision tests? yes
Outline Searching for the new SM: colliders & precision measurements EDMs & the Origin of Baryonic Matter Precision tests and “footprints” of the new Standard Model • Supersymmetry as an illustration • Not covered: nnbar oscillations, non- Newtonian gravity
Big Bang Nucleosynthesis (BBN) & light element abundances • Weak interactions in stars & solar burning • Supernovae & neutron stars • Non-zero vacuum expectation value of neutral Higgs breaks electroweak sym and gives mass: Electroweak symmetry breaking: Higgs ? Electroweak symmetry breaking: Higgs ? Puzzles the Standard Model can’t solve Origin of matter Unification & gravity Weak scale stability Neutrinos • Where is the Higgs particle? • Is there more than one? Beyond the SM SM symmetry (broken) Fundamental Symmetries & Cosmic History What are the symmetries (forces) of the early universe beyond those of the SM?
Two frontiers in the search for new physics Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ) Indirect searches at lower energies (E < MZ) but high precision Large Hadron Collider Ultra cold neutrons CERN Particle, nuclear & atomic physics High energy physics New SM:Unique role for low energy studies in the LHC era (and beyond!)
Electroweak symmetry breaking: Higgs ? ? Beyond the SM SM symmetry (broken) Precision Probes of New Symmetries New Symmetries Origin of Matter Unification & gravity Weak scale stability Neutrinos
Probing Fundamental Symmetries beyond the SM: Use precision low-energy measurements to probe virtual effects of new symmetries & compare with collider results • Precision measurements predicted a range for mt before top quark discovery • mt >> mb ! • mt is consistent with that range • It didn’t have to be that way Radiative corrections Direct Measurements Stunning SM Success Comparison of Precision Measurements Probes Properties of Virtual Particles J. Ellison, UCI
Precision ~ Mass Scale M=m~ 2 x 10-9 exp ~ 1 x 10-9 M=MW ~ 10-3 Interpretability • Precise, reliable SM predictions • Comparison of a variety of observables • Special cases: SM-forbidden or suppressed processes Precision Probes of the New SM
EDMs & the Origin of Baryonic Matter • Can new physics at the electroweak scale explain the abundance of baryonic matter ? • How do EDMs and collider searches provide complementary probes ?
Cosmic Energy Budget Dark Matter Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Dark Energy Baryons Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches Explaining non-zero rB requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ?
Anomalous B-violating processes Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Prevent washout by inverse processes Sakharov, 1967 Baryogenesis: Ingredients
Cosmic Energy Budget Electroweak symmetry breaking: Higgs ? Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos • Baryogenesis: Sakharov • Baryon number violation • C & CP Violation • Departure from equilibrium Weak scale baryogenesis: test experimentally: EDMs & Higgs boson studies Beyond the SM SM symmetry (broken) Baryogenesis Scenarios Baryogenesis: When? CPV? SUSY? Neutrinos? ?
Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EWPT too weak Increasing mh EW Baryogenesis: Standard Model
Quantum Transport CPV Chem Eq R-M et al Unbroken phase Weak Scale Baryogenesis Systematic baryogenesis: SD equations + power counting Veff (f,T): Requirements on Higgs sector extensions & expt’l probes • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase CP Violation 1st order phase transition Sakharov, 1967 Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD • Is it viable? • Can experiment constrain it? • How reliably can we compute it? • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics
Theory Cosmology LHC EDMs Theory Baryogenesis: EDMs & Colliders
M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ T ~ TEW mZ sinb sinqW M2 -mZ sinb sinqW 0 CPV 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ M2 MC = m Illustrative Study: MSSM Chargino Mass Matrix Neutralino Mass Matrix Resonant CPV: M1,2 ~ m
QCD QCD QCD EDMs: Complementary Searches Improvements of 102 to 103 Electron Neutron Neutral Atoms Deuteron
T ~ TEW Future de dn dA Cirigliano, Lee, Tulin, R-M Resonant Non-resonant EDMs & Baryogenesis
Decouple in large limit Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDM Weinberg: small matrix el’s EDMs: One vs Two Loop One-loop EDM: q, l, n… Chromo-EDM: q, n…
baryogenesis Prospective dn LHC reach LEP II excl Present de Baryogenesis: EDMs & Colliders I Cirigliano, Profumo, R-M
Light LH squarks Heavy RH squarks Heavy LH squarks Light RH squarks Chung, Garbrecht, R-M, Tulin Stronger limits on CPV for light squarks (one-loop regime) Baryogenesis: EDMs & Colliders II Transport, Spectrum, & EDMs
Larger YB for light Higgses Li, Profumo, RM Stronger limits on CPV for light Higgses & large tan Baryogenesis: EDMs & Colliders III Higgs Boson Masses
Precision Tests • Searching for the new SM: colliders & precision measurements • Neutron decay • Implications for other measurements
Muons • gm-2 • mA->eA Nuclei & Charged Leptons PV Electron Scattering • Q-Weak • 12 GeV Moller • PV DIS Weak Decays • n decay correlations • nuclear b decay • pion decays • muon decays
b-decay SM & New Physics SUSY Weak decays: SM old & new
b-decay SM theory input Recent Marciano & Sirlin Weak decays
CKM Summary: PDG04 UCNA
Vus & Vud theory ? New 0+ info CKM Summary: New Vus & tn ? New tn UCNA
No SUSY DM: LSP unstable • Neutrinos are Majorana Flavor-blind SUSY-breaking 12k R ParityViolation Kurylov, R-M, Su CKM unitarity ? MW CKM, (g-2)m, MW, Mt ,… APV l2 b-decay 12k 1j1 1j1 No long-lived LSP or SUSY DM New physics Kurylov, R-M RPV SUSY Weak decays: SUSY
Correlations Non (V-A) x (V-A) interactions: me/E Weak decays & SUSY SUSY
Profumo, R-M, Tulin Future exp’t ? Large L-R mixing: New models for SUSY-breaking Yukawa suppressed L-R mixing: “alignment” models Weak decays & SUSY : Correlations SUSY loop-induced operators with mixing between L,R chiral supermultiplets
Implications for Other Studies • RPV & Neutrino Mass • PV Electron Scattering • Higgs Searches
mnEFF & neutrino spectrum Theory Challenge: matrix elements+ mechanism Long baseline b-decay ? Normal Inverted ? 0nbb-Decay: LNV? Mass Term? Dirac Majorana
Theory Challenge: matrix elements+ mechanism O(1) for L ~ TeV 0nbb-Decay: Mechanism Dirac Majorana Mechanism: does light nM exchange dominate ? How to calc effects reliably ? How to disentangle H & L ?
0nbb signal equivalent to degenerate hierarchy Loop contribution to mn of inverted hierarchy scale 0nbb-Decay: Interpretation
“Weak Charge” ~ 0.1 in SM Enhanced transparency to new physics Small QCD uncertainties (Marciano & Sirlin; Erler & R-M) QCD effects (s-quarks): measured (MIT-Bates, Mainz, JLab) Lepton Scattering & New Symmetries Parity-Violating electron scattering
Moller (ee) RPV: No SUSY DM Majorana n s SUSY Loops Q-Weak (ep) d QWP, SUSY / QWP, SM d QWe, SUSY / QWe, SM gm-2 12 GeV 6 GeV E158 Kurylov, RM, Su Probing SUSY with PV Electron Scattering
Neutrino correlation Pion leptonic decays • Ongoing theory for weak decays: • Further reductions in QCD errors? • Impact on Extra Dim scenarios ? • Implications of LHC results ? mn SUSY effects in weak decays PV Electron Scattering Muons SUSY: Observable E-dependence implies super heavy non-SM Higgs SUSY: Observable deviation could imply large slepton mass splittings • Q-Weak • 12 GeV Moller • PV DIS mn implications for NP in weak decays Vud & CKM Unitarity RM et al RM et al • gm-2 • mA!eA • Essential Role for Theory • Precise SM predictions (QCD) • Sensitivity to new physics & complementarity w/ LHC Reduced QCD error: Marciano & Sirlin Reduced QCD error: Cirigliano & Roselle Nuclei & Charged Leptons: Theory Weak Decays • n decay correlations • nuclear b decay • pion decays • muon decays
Summary • Precision studies and symmetry tests with neutrons are poised to discovery key ingredients of the new Standard Model during the next decade • Physics “reach” complements and can even exceed that of colliders: dn~10-28 e-cm ; O/OSM ~ 10-4 • Substantial experimental and theoretical progress has set the foundation for this era of discovery • The precision frontier is richly interdisciplinary: nuclear, particle, hadronic, atomic, cosmology
Back Matter • Precision studies and symmetry tests with neutrons are poised to discovery key ingredients of the new Standard Model during the next decade • Physics “reach” complements and can even exceed that of colliders: dn~10-28 e-cm ; O/OSM ~ 10-4 • Substantial experimental and theoretical progress has set the foundation for this era of discovery • The precision frontier is richly interdisciplinary: nuclear, particle, hadronic, atomic, cosmology
12k 1j1 12k 1j1 L=1 L=1 SUSY: R Parity-Violation
Vertex & External leg SUSY Radiative Corrections Propagator Box Kurylov & RM
Vertex & External leg Kurylov, RM, Su SUSY Radiative Corrections Propagator Box
Fast, but not too fast Work to lowest, non-trivial order in e’s Error is O (e) ~ 0.1 ed =vw (k / w ) << 1 Hot, but not too hot Cirigliano, Lee, R-M ep = Gp / w << 1 Dense, but not too dense em = m / T << 1 Systematically derive transport eq’s from Lnew Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M Quantum Transport & Baryogenesis Electroweak Baryogenesis Scale Hierarchy:
Liu et al: New formulation of Schiff operator New nuclear calc’s needed ! + … Dominant in nuclei & atoms Nuclear & hadron structure ! Schiff Moment in 199Hg Engel & de Jesus: Reduced isoscalar sensitivity ( qQCD ) EDMs & Schiff Moments One-loop EDM: q, l, n… Chromo-EDM: q, n…