190 likes | 321 Views
International Workshop on “Influence of atomic displacement rate, neutron spectrum and irradiation temperature on radiation-induced ageing of power reactor components”, October 4, 2005, Ulyanovsk, Russia. Effects of irradiation flux on embrittlement mechanisms
E N D
International Workshop on“Influence of atomic displacement rate, neutron spectrum and irradiation temperature on radiation-induced ageing of power reactor components”, October 4, 2005, Ulyanovsk, Russia Effects of irradiation flux on embrittlement mechanisms on reactor pressure vessel steel: Cu nano-precipitates and defects studied by positron annihilation and 3 dimensional atom probe M. Hasegawa1), Y. Nagai1), T. Toyama1), Zheng Tang1), Y. Nishiyama2), M. Suzuki2), T. Ohkubo4) and K. Hono4) 1) Tohoku University, Japan hasegawa@imr.tohoku.ac.jp 2) Japan Atomic Energy Research Institute (JAERI), Japan 3) National Institute for Materials Science (NIMS), Japan
Outline RPV Surveillance Test Specimens 1) Introd. to Positron Annihilation (PA*)) 2) Flux Eeffcts Calder Hall Reactor vs JMTR (PA & 3D-AP**)) * ) Positron Annihilation (PA) **) 3Dimensional Atom Probe (3D-AP)
0 1.27 MeV 22Na Cu Fe e+ (a) (b) 0.511 MeV 1 (c) 0.511 MeV 2 (d) (a) Injection and thermalization, (b) Diffusion, (c) Trapping, (d) Annihilation. e+ annihilates with a Cu electron
22Na e+: Self-Searching Probe Cu Nanovoid Cu-V Complex Cu Nano-Precipitates Positron Quantum Dot State Positron Density 2 1
Embedded Particles - Cu Precipitates in Dilute Fe-Cu Alloys - Positron Density Distributions Cu1 Cu5 Cu59 Diameter ~ 1 nm Fe Cu Super-Cell:1024 atom sites
Positron Quantum-Dot Confinement in a Precipitate of 59 Cu Atoms Embedded in Fe Matrix Fe Cu Density isosurface ofa quantum-dot confined positron in a Cu59 in Fe matrix. The isodensity value is 0.5% of the maximum.
Coincidence Doppler Broadening : CDB pL : Electron Momentum along the Emitted γ–ray γ1 γ2 e- e+ Ge detector Ge detector CDB CDB Ratio Spectra Cu 3d10 Electrons Normalize to Pure Fe Low High Low High Low Momentum Region :Vacancy type defects High Momentum Region: Cu Nano-Precipitates
Fe-0.3wt%Cu: CDB Ratio Curves neutron-irrad.: 8.3×1018n/cm2, 100C Normalized toFe Normalized toCu Pure Cu Vac. Type Defects Vac. Type Defects Cu 3d Peak Pure Fe As-Irrad. Almost Flat As-Irrad. No Fe Valley τ1 = 165ps : ~ monovacancies(V1) τ2 = 405ps (51%) nanovoids (~V30) Vacancy & nanovoid covered with Cu atoms
V2 [100] V2 [111] V9 V5 V15 Positron Lifetimeand Binding Energy in Vacancy Clusters in Fe Positron Binding Energy Positron Lifetime
Embrittlement Mechanisms: Fluence Evolution Total Embrittlement Matrix Defects Cu Nano Precipitates Soneda (2003) Neutron Flux Effects on the Embrittlement Mechanisms ? 108 109 1010 1013 1014 1011 1012 Neutron Flux (n/cm2/s) Calder Hall-Type Reactor MTR BWR·PWR
Calder Hall Reactor (CHR) in Tokai*, Japan: Surveillance Test Specimen C-Mn base Ferritic Steel wt.% *In –Service (1966 – 1998) Post-Weld Heat Treatment : 600ºC, 4h. Irradiation Conditions High flux Low flux *Japan Materials Testing Reactor
Strengthening by Irradiation CHR vs. JMTR Irradiated at 240ºC JMTR 3.6x1012n/cm2·s CHR Surveillance 4.2x108n/cm2·s
CDB (Low, High) Momentum Correlation Positron Lifetime I2 Pure Cu CHR Surveillance Thermal Ageing: Cu Nano Precipitates V1 τ2 V1 τav aged at 300ºC, 70,000h Pure Fe bulk Fe aged at 400ºC, 70,000h Unirrad. JMTR τ1 Vacancy-Type Defects Pure Fe irrad. 300ºC, 70,000h JMTR CHR Surveillance 400ºC, 70,000h Unirrad.
3D-AP Mapping : As-irrad. JMTR CHR Surveillance 10nm 10nm Cu 10nm 10nm 30nm 30nm Mn Ni Si
CHR Surveillance CHR Surveillance JMTR JMTR Isochronal Annealing: CDB & Hardness 200~700ºC, 30 min. CDB Low/High Momentum Correlation Vickers Microhardness Recovery of Vacancy-Type Defects Recovery of Cu Nano- Precipitates Pure Fe(As-irrad.)
CHR Surveillance JMTR Cu 10nm 10nm 10nm 10nm 30nm 30nm Mn Ni Si 3D-AP Mapping : Annealed at 450ºC for 0.5h
Summary : CHR vs. JMTR CHR-Surveillance : Low Flux JMTR : High Flux Positron Annihilation and 3D-AP Analysis for RPV Steels As-irradiated State CHR-Surveillance : Cu nano-precipitates JMTR : Almost no Cu precipitates but vacancy-type defects Post-Irradiation Annealing CHR-Surveillance : The Cu nano-precipitates anneal out andHv recovers at 650ºC. JMTR : The vacancy-type defects recover at 450ºC. The Cu precipitation is not significant. • Marked Flux Effects • Low flux irradiation in CHR : • Strengthning is caused by enhanced Cu precipitation • at very low doses. • High flux irradiation in JMTR : • Almost the same strengthening is due to matrix defects • but not to Cu precipitates.
LEAPin Hasegawa Lab. (Oarai Center) (Local Electrode Atom Probe: LEAPBy IMAGO) Position Sensitive Detector Local Electrode Specimen High Field Region
Cu Precipitates: Fe-1.0wt%Cu Aged at 475C for 10h Conventional Atom Probe (Energy-Compensating Type) LEAP Atom Probe 2x107 Atoms, 1hour 3x105 Atoms, 6 hours 10x10x60 nm 60x60x170 nm