1 / 32

Energy (TKK-2129)

13/14 Spring Semester . Energy (TKK-2129). Instructor: Rama Oktavian Email: rama.oktavian86@gmail.com Office Hr.: M.13-15, Tu. 13-15, W. 13-15, Th. 13-15, F. 09-11. Outlines. 1. Biomass energy: Intro. 2. Biomass energy sources. 3. Biomass to energy technology.

dallon
Download Presentation

Energy (TKK-2129)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 13/14 Spring Semester Energy(TKK-2129) Instructor: Rama Oktavian Email: rama.oktavian86@gmail.com • Office Hr.: M.13-15, Tu. 13-15, W. 13-15, Th. 13-15, F. 09-11

  2. Outlines 1. Biomass energy: Intro 2. Biomass energy sources 3. Biomass to energy technology 4. Recent update on biomass energy

  3. Biomass energy: Intro

  4. Biomass energy: Intro What is it?? organic material made from plants and animals contains stored energy from the sun Plants absorb the sun's energy in a process called photosynthesis. The chemical energy in plants gets passed on to animals and people that eat them

  5. Biomass energy: Intro What is it considered as renewable?? we can always grow more trees and crops, and waste will always exist. Some examples of biomass fuels are wood, crops, manure, and some garbage. When it is burned, chemical energy is released as heat It can also be burned to produce steam for electricity generation

  6. Biomass energy: Intro Advantages Most of them are renewable and abundant Solve energy crisis in the future – reduce dependency on fossil fuel High energy efficiency Generally it does not polluted the atmosphere as much as oil and coal Reduce landfill

  7. Biomass energy: Intro Disadvantages More serious air pollution was found when burning plants matters, e.g: particulate matter from solid Emission some toxic gases and ash It takes too much energy to collect, dry and transport Cutting too many woods is a kind of deforestation can cause soil erosion and natural disasters It uses large area to grow biomass Food security problem will arise

  8. Biomass energy: Resources http://cdn2.blogmost.com/wp-content/uploads/2014/03/Biomass.jpg

  9. Biomass energy: Resources Biomass potential and utilization in Indonesia

  10. Biomass energy: Resources Biomass potential and utilization in Indonesia Animal Population (2010) in Indonesia and South Sumatera Province Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  11. Biomass energy: Resources Biomass potential and utilization in Indonesia Agriculture Production (2010) in Indonesia and South Sumatera Province (SSP) Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  12. Biomass energy: Resources Biomass potential and utilization in Indonesia Plantation Production (2009) in Indonesia and South Sumatera Province (SSP) Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  13. Biomass energy: Resources Technical potential of biomass (from forest and estate) Production : 12 million Ha Total waste production : 1,15 billion ton/y (e.g. sugar mill, sawmill, rubber estate, palm mill oil, copra production, rice mill etc). Electricity production potential : 821 million MWh/y Generating Power potential : 94,000 MW Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  14. Biomass energy: Resources Technical potential of biomass (from forest and estate) M.H. Hasan, T.M.I. Mahlia, HadiNur, A review on energy scenario and sustainable energy in Indonesia, Renew. Sust. Energ. Rev. 16 (2012) 2316– 2328

  15. Biomass to energy technology Biomass products Chemicals such as methanol, fertilizer, and synthetic fiber Energy such as heat Electricity Transportation fuel such as gasoline and diesel PrabirBasu, Biomass Gasification and Pyrolysis Practical Design and Theory, Elsevier (2010).

  16. Biomass to energy technology Biomass conversion into energy Boyle, Renewable Energy, Oxford University Press (2004)

  17. Biomass to energy technology Example Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  18. Biomass to energy technology Thermochemical conversion Direct Combustion Gasification Pyrolysis PrabirBasu, Biomass Gasification and Pyrolysis Practical Design and Theory, Elsevier (2010).

  19. Biomass to energy technology Biomass gasification

  20. Biomass to energy technology Biomass pyrolysis http://www1.eere.energy.gov/biomass/pyrolysis.html

  21. Biomass to energy technology Biochemical conversion Digestion (anaerobic and aerobic) Fermentation Enzymatic or acid hydrolysis http://www1.eere.energy.gov/bioenergy/images/biochemical_pathways.jpg

  22. Biomass to energy technology Example of biomass digestion Muhammad Faizal, 2011, BIOMASS POTENTIAL AND ITS UTILIZATION IN INDONESIA, The 8th Biomass Asia Workshop” Hanoi, Vietnam

  23. Biomass to energy technology Biomass digestion Decompose biomass with microorganisms - Closed tanks known as anaerobic digesters - Produces methane (natural gas) and CO2 Methane-rich biogas can be used as fuel or as a base chemical for bio-based products. Used in animal feedlots, and elsewhere

  24. Biomass to energy technology Biomass digestion http://www.tibbarconstruction.com/images/pic_biomass_process.jpg

  25. Biomass to energy technology Biomass digestion process What kind of reactions occur in digester? http://www.e-inst.com/biomass-to-biogas/

  26. Biomass to energy technology Biomass fermentation Process scheme http://www.ag.ndsu.edu/centralgrasslandsrec/biofuels-research-1/janets_ethanol.jpg

  27. Biomass to energy technology Biomass fermentation • Process scheme • Convert biomass to sugar or other fermentation feedstock • Ferment biomass intermediates using biocatalysts • Microorganisms including yeast and bacteria; • 3. Process fermentation product • - Yield fuel-grade ethanol and other fuels, chemicals, heat and/or electricity http://www.nrel.gov/biomass/proj_biochemical_conversion.html

  28. Recent update 2nd generation biofuel Why?? First-generation biofuels are extracted from agricultural products: beetroot, rape seed, etc. They compete with foodstuffs. Concerns and constraints: Compete with food crops Expensive total production cost Accelerating deforestation The biomass feedstock may not be produced sustainably Potentially has a negative impact on biodiversity R. Sims, M. Taylor, J. Saddler, W. Mabee. 2008. From 1st to 2nd generation biofuel technologies, IEA

  29. Recent update 2nd generation biofuel Second-generation biofuels are produced using the inedible part of plants (straw, wood, plant waste). Unlike first-generation biofuels, they do not compete with the use of raw materials as food. They can be used directly by traditional vehicles and considerably reduce CO2 emissions. http://www.airliquide.com/en/second-generation-biofuels-1.html

  30. Recent update 2nd generation biofuel Air Liquide is developing Bioliq®, a process that produces second-generation biofuels using straw in three successive stages: The first step in the process consists of high-temperature pyrolysis of the straw to convert it into synthetic crude: bioliqSynCrude®. The second step consists of gasification, i.e. the transformation of the synthetic crude into synthesis gas, a mixture of hydrogen and carbon monoxide. Through several chemical reactions, the Bioliq® process then converts the synthesis gas into methanol or directly into biofuels. The Bioliq® process can produce 1 liter of diesel from 7 kg of straw. http://www.airliquide.com/en/second-generation-biofuels-1.html

  31. Recent update 2nd generation biofuel Second-generation biofuels present an energy and environmental advantage: they have a much better carbon footprint than other fuels: up to 90% reduction in CO2 emissions compared to mineral fuels and about 50% compared to first-generation biofuels. http://www.airliquide.com/en/second-generation-biofuels-1.html

  32. Thank You !

More Related