1 / 50

Anatomy & Biomechanics of the Shoulder

Anatomy & Biomechanics of the Shoulder. James J. Irrgang, Ph.D., PT, ATC Department of Physical Therapy University of Pittsburgh. Shoulder Motion. Combined Movements:. Flexion - 150 - 180 0 Extension - 50 - 60 0 Abduction - 150 - 180 0 External rotation - 90 0

Download Presentation

Anatomy & Biomechanics of the Shoulder

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Anatomy & Biomechanics of the Shoulder James J. Irrgang, Ph.D., PT, ATC Department of Physical Therapy University of Pittsburgh

  2. Shoulder Motion Combined Movements: • Flexion - 150 - 1800 • Extension - 50 - 600 • Abduction - 150 - 1800 • External rotation - 900 • Internal rotation - 70 - 900 • Horizontal abduction • Horizontal adduction

  3. Shoulder Girdle Includes: • G-H joint • A-C joint • S-C joint • S-T joint • Subacromial space

  4. Glenohumeral Motion Controlled by: • Passive restraints • Active restraints

  5. Glenohumeral Motion Passive Restraints: • Bony geometry • Labrum • Capsuloligamentous structures • Negative intra-articular pressure

  6. Capsuloligamentous Structures Glenohumeral ligaments: • SGHL • MGHL • IGHL complex • anterior band • posterior band • axillary pouch

  7. Capsuloligamentous Structures Glenohumeral ligaments:

  8. Capsuloligamentous Structures • Coracohumeral ligament • anterior band • posterior band

  9. Restraints to External Rotation Dependent on arm position: • 00 - SGHL, C-H & subscapularis • 450 - SGHL & MGHL • 900 - anterior band IGHLC

  10. Restraints to Internal Rotation Dependent on arm position: • 00 - posterior band IGHLC • 450 - anterior & posterior band IGHLC • 900 - anterior & posterior band IGHLC

  11. Restraints to Inferior Translation Dependent on arm position: • 00 - SGHL & C-H • 900 - IGHLC

  12. Glenohumeral Motion Scapular Plane: • Flexion/extension - 1200 • Abduction/adduction - 1200 • External/internal rotation • Horizontal abduction/ adduction

  13. Arthrokinematics of Glenohumeral Joint

  14. Glenohumeral Motion Convex - Concave Rule:

  15. Glenohumeral Motion Arthrokinematics: • Abduction • Flexion • Extension • External rotation • Internal rotation

  16. Glenohumeral Motion Arthrokinematics: Harryman et. al. 1990

  17. Glenohumeral Motion Arthrokinematics: Harryman et. al. 1990

  18. Glenohumeral Motion Arthrokinematics: Harryman et. al. 1990

  19. Glenohumeral Motion Capsular Tightness: Results in Abnormal Arthrokinematics

  20. Glenohumeral Motion Normal Arthrokinematics: Combines rotation & translation to keep humeral head centered on glenoid

  21. Deltoid Pectoralis major Latissimus dorsi Teres major Biceps Coracobrachialis Triceps Scapulohumeral Muscles Prime Movers:

  22. Scapulohumeral Muscles Rotator Cuff: • Subscapularis • Supraspinatus • Infraspinatus • Teres Minor

  23. Rotator Cuff Function • Approximates humerus to function • Supraspinatus assists deltoid in abduction • Subscapularis, infraspinatus & teres minor depress humeral head

  24. Subscapularis • Effective restraint to ER with arm at side • Ineffective restraint to ER with arm abducted to 900 Turkel et. al. JBJS 1981

  25. Infraspinatus/Teres Minor • Reduces strain on anterior band of IGHLC • “Hamstrings” of glenohumeral joint Cain et. al. AJSM 1987

  26. Long Head of Biceps • Biceps tendon force increases torsional rigidity to ER • No effect on strain of IGHLC • Effect lost with SLAP lesion Rodosky et. al. AJSM 1994

  27. Biceps Becomes More Important Anterior Stabilizer as Capsuloligamentous Stability Decreases Itoi et. al. JBJS 1994 & Glousman et. al. 1988

  28. Force Couples Acting on Glenohumeral Joint • Transverse plane - anterior vs. posterior RC • Coronal plane - deltoid vs. inferior RC

  29. Rotator Cuff Tear Supraspinatus: • Essential force couples maintained • Normal strength & function possible

  30. Rotator Cuff Tear Supraspinatus/Posterior Cuff: • Essential force couples disrupted • Weakness with external rotation • Little active elevation possible

  31. Rotator Cuff Tear Massive Tear : • Essential force couples disrupted • Weakness with internal & external rotation • Little active elevation possible

  32. Subacromial Space

  33. Structures Within Suprahumeral Space • Long head of biceps • Superior capsule • Supraspinatus tendon • Upper margins of subscapularis & infraspinatus tendons • Subacromial bursa • Inferior surface of A-C joint

  34. Subacromial Space Clinical Relevance: • Avoidance of impingement during elevation of arm requires: • external rotation of humerus to clear greater tuberosity • upward rotation of scapula to elevate lateral end of acromion

  35. Subacromial Space Clinical Relevance: • Primary impingement: • structural stenosis of subacromial space • Secondary impingement: • functional stenosis of subacromial space due to abnormal arthrokinematics

  36. Scapulothoracic Joint

  37. Scapulothoracic Muscles • Trapezius • Serratus anterior • Rhomboids • Levator scapulae • Pectoralis minor • Subclavius

  38. Scapulothoracic Motion • Elevation/depression • Protraction/retraction • Upward/downward rotation

  39. Force Couple atScapulothoracic Joint • Serratus anterior produces anterio-lateral movement of inferior angle • Upper trapezius pulls scapula medially

  40. Scapulohumeral Rhythm • Total elevation: • 1200 at G-H joint • 600 at S-T joint

  41. Force Couple atScapulothoracic Joint • Serratus anterior produces anterio-lateral movement of inferior angle • Upper trapezius pulls scapula medially

  42. Acromioclavicular Joint

  43. Acromioclavicular Joint • Joint capsule • A-C ligaments • Intra-articular disc • Coracoclavicular ligaments • conoid (medial) • trapezoid (lateral)

  44. Acromioclavicular Joint Movements: • Axial rotation of clavicle (spin) • Angulation between scapula & clavicle

  45. Sternoclavicular Joint • Joint capsule • Anterior & posterior S-C ligaments • Intra-articular disc • Interclavicular ligament • Costoclavicular ligament

  46. Sternoclavicular Joint Motions: • Protraction/retraction • Elevation/depression • Axial rotation (spin)

  47. Biomechanics of Scapular Rotation • Scapulothoracic motion occurs as part of closed kinetic chain involving: • A-C joint • S-C joint

  48. Scapular Rotation Phase I • Upper & lower portions of trapezius & serratus anterior produce upward rotatory force on scapula • Motion at A-C joint prevented by coracoclavicular ligament • Rotation of scapula occurs as elevation of clavicle at S-C joint

  49. Scapular Rotation Phase II • Further motion at S-C joint prevented by costoclavicular ligament • Continued upward rotation of scapula pulls on costoclavicular ligament causing posterior rotation of clavicle • Posterior rotation of clavicle allows further upward rotation of scapula

  50. Scapular Rotation Necessary to: • Enhance glenohumeral stability • Elevate acromion to avoid impingement • Maintain effective length tension relationship of scapulohumeral muscles Review this lecture

More Related