420 likes | 493 Views
Hopefully a clearer version of Neural Network. O1. I1. H1. I2. H2. O2. Layers of Weights. We Name Sets of Weights between layers As W1 for weights between input Layer and First Hidden Layer W2 for weights between next 2 layers and
E N D
O1 I1 H1 I2 H2 O2
Layers of Weights • We Name Sets of Weights between layers As W1 for weights between input Layer and First Hidden Layer W2 for weights between next 2 layers and WN-1 for Weights between N-1th and Nth Layer(i.e. Output Layer) In our example Net we just have 3 layers Input Hidden and Output So we have just W1 and W2
W1 W2 O1 I1 H1 I2 H2 O2
Weights along Individual Links • Convention • Each Weight is named as follows • WNij • N refers to the Layer of Weights • So Between Input and First Hiden Layer i.e. W2ij is the Reference • Between Hidden and Output W2ij
Individual Weights within a layer • Reference WNij • WN refers to the Weight Layer • ij refers to the indices of the source and destination nodes. • So for example the weight between hidden node h1 and output node o2 • It belongs to weight layer 2 so W2 • i = 1 and j = 2 so Weight is W212
W1 W2 O1 I1 H1 W212 I2 H2 O2
W2 W1 W111 W211 O1 I1 H1 W121 W221 W212 W112 I2 H2 O2 W122 W222
W2 W1 1 -1 O1 I1 H1 0 0 0 -1 I2 H2 O2 1 -1
Inputs • 1 and 0 • Target outputs {1,1}
W2 W1 1 1 -1 O1 I1 H1 0 0 0 -1 0 I2 H2 O2 1 -1
Hidden Layer Computation • Xi =iW1 = • 1 * 1 + 0 * -1 = 1, • 1 * -1 + 0 * 1 = -1 = • { 1 - 1} = {Xi1,Xi2} = Xi
h = F(X) • h1 = F(Xi1) = F(1) • h2 = F(Xi2) = F(-1)
W2 W1 0.73 1 1 -1 O1 I1 H1 0 0 0 -1 0 I2 H2 O2 1 -1 0.27
Output Layer Computation • X = hW2 = • 0.73 * -1 + 0.27 * 0 = -0.73, • 0.73 * 0 + 0.27 * -1 = -0.27 = • { -0.73 - 0.27} = {X1,X2} = X
O = F(X) • O1 = F(X1) • O2 = F(X2)
W2 W1 0.73 1 1 -1 O1 I1 H1 0.325 0 0 0 -1 0 I2 H2 O2 1 -1 0.433 0.27
Error • D= Output(1 – Output)(Target – Output) • Target T1 = 1 , O1 = 0.325 = 0.33 • d1 = 0.33( 1 -0.33)(1 -0.33 ) = 0.33 (0.67)(0.67) = 0.148 • Target T2 = 1 , O2 = 0.433 = 0.43 • d2 = 0.43(1 - 0.43)(1-0.43) = 0.43(0.57)(0.57) = 0.14
Weight Adjustment • △W2t = αhd + Θ △W2t-1 • where α = 1 • Time t = 1 so no previous time
W2 W1 1 -0.891 O1 I1 H1 0 0.04 0.102 -1 I2 H2 O2 1 -0.962
Next • Calculate Change on W1 layer weights
What is this • Outputs are O1 and O2 • So k = {1,2} • So if i = 1
W2 W1 1 -0.891 O1 I1 H1 0 0.04 0.102 -1 I2 H2 O2 1 -0.962
This equals • e1 = (h1(1-h1)W11 D1 +W12D2 • e2 = (h2(1-h2)) W21 D1 +W22D2 • d1 = 0.15 d2 = = 0.14 e1 = (0.73(1-0.73))( -1* 0.15 +0*0.14) • e2 =( 0.27(1-0.27)) (0 *0.15 +-1*0.14) • e1 = (0.73(0.27)( -0.15)) • e2 =( 0.27(0.73)) (-0.14) • e1 = -0.03 • e2 = -0.028
Weight Adjustment • △W1t = αIe + Θ △W2t-1 • where α = 1
W2 W1 0.97 -1.109 O1 I1 H1 0 -0.04 -0.102 -1.028 I2 H2 O2 1 -1.038