270 likes | 363 Views
ICHEP 2012 Melbourne. Cosmological Neutrino mass constraint from the WiggleZ Dark Energy Survey. Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration.
E N D
ICHEP 2012 Melbourne Cosmological Neutrino mass constraint from the WiggleZ Dark Energy Survey Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration Hubble Space Telescope and particlezoo.net
Neutrinos • Exactly mass-less in Standard Model • Oscillations imply mass: • Atmospheric and accelerator neutrinos: Dm322 ≈ 3×10-3 eV2 • Solar and reactor neutrinos: Dm122 ≈ 8×10-5 eV2 • One species > 0.05 eV • mne< 2.05 eV (beta decay) • Cannot (yet) measure absolute mass! particlezoo.net
13.7 billion years of history http://map.gsfc.nasa.gov/
13.7 billion years of history http://map.gsfc.nasa.gov/
13.7 billion years of history http://map.gsfc.nasa.gov/
Neutrinos and structures • Relativistic when decoupling • Velocities decay with expansion • Spreading out gravitational potential • Heavy neutrinos = strong suppression over short range • Light neutrinos = weak suppression over long range
Measure of structure • 3D galaxy map nedwww.ipac.caltech.edu Hubblesite.org
Power spectrum Figure: Tamara Davis lighter neutrinos Proportional to number of galaxies heavier neutrinos Large scales Small scales
Previous results • Cosmic Microwave Background (CMB) Smu< 1.3eV (Komatsu 2010) • CMB+Sloan Digital Sky Survey Smu< 0.62eV (Reid 2010) • CMB+SDSS+Lyα Smu< 0.28eV (Seljak 2006) Require strong assumptions • Remember: Lower limit is Smu > 0.05eV
WiggleZ Dark Energy Survey • 3D galaxy map from Anglo Australian Telescope (AAT) • 238,000 star-forming blue emission line galaxies • 4 redshift bins, z = 0.1-0.9 http://wigglez.swin.edu.au/ Chris Blake Michael Drinkwater and David Woods
7 equatorial fields, each 100-200 deg2 >9° on side, ~3 x BAO scale at z > 0.5 Physical size ~ 1300 x 500 x 500 Mpc/h WiggleZ Dark Energy Survey Southern Hemisphere Surveys • 3D galaxy map from Anglo Australian Telescope (AAT) • 238,000 blue emission line galaxies • Redshift 0.1-0.9, 4 bins http://wigglez.swin.edu.au/ Chris Blake Michael Drinkwater and David Woods
GiggleZ simulations • Gigaparsec WiggleZ Survey Simulations • 21603 particles • 1 Gpc3 • Resolve 1.5x1011Msun/h
Power spectra z=0.4-0.8
Matter and movement • Bias • Galaxies does not trace dark matter directly • WiggleZ bias linear, marginalise over scaling
Matter and movement • Bias • Galaxies does not trace dark matter directly • WiggleZ bias linear, marginalise over scaling • Redshift Space Distortions • Peculiar velocities due to structures affect redshift to distance conversion Figure: John Peacock
Simulated halos WiggleZ galaxies at z = 0.2 Massive highly biased galaxies at z = 0.2 WiggleZ galaxies at z = 0.6
Importance of modeling Linear Halofit Jennings et al. fitting formula Jennings et al. with zero velocity Empirical damping N-body calibrated
Model selection • Fitting simulated power spectrum Quality of fit for input parameters Ability recover input parameters
Simulation calibrated model • Similar to Reid et al. but calibrated to GiggleZ Non-linear effects from GiggleZ scaled to cosmology Halofit non-wiggly Acoustic peaks and their broadening bias
Results Sloan Digital Sky Survey (110000 galaxies) Smu< 0.62eV WiggleZ (240000 galaxies) Smu< 0.60eV WiggleZ+H0+Baryonic Acoustic OscillationsSmu< 0.29eV
Recent development • Sloan Digital Sky Survey-III • 1 mio photometric redshifts (low resolution) • Smu< 0.30 eV (de Putter et al. Jan 2012) • Galaxy clusters, South Pole Telescope • X-ray luminosity-mass relation • Smu< 0.28 eV (Benson et al. Dec 2011) • Hubble parameter measurements • Measure expansion as function of redshift • Smu< 0.48 eV(Moresco et al. Feb 2012)
Future • Euclid (ESA launch 2019) • 1.5 mio galaxies spectra • Smu< 0.1 eV web.mit.edu • Square Kilometer Array (2024) • Use hydrogen to detect galaxies • Smu< 0.05 eV -> measurement ska.gov.au Schoolworkhelper.net • KATRIN • Beta-decay • mue< 0.2 eV
Summary • Neutrino mass unknown • Mass imprints on galaxy distribution • WiggleZ+WMAP+BAO Smu< 0.29eV Riemer-Sørensen et al, arXiv:1112.4940 • Stay tuned for data release and CosmoMCmodule I’ll be working on the largest and smallest objects in the Universe – super clusters and neutrinos. I’d like you to handle everything in between”
WiggleZ highlights • WiggleZ survey info • Drinkwater et al. 2010 MNRAS 401(3), 1429 • http://wigglez.swin.edu.au/ • WiggleZ selection function and power spectrum • Blake et al. 2010, MNRAS 406(2), 803 • Growth of structure, using Redshift space distortions • Blake et al. 2010, MNRAS (in press: 1104.2948) • H(z), using Alcock-Paczynski effect (sphericity of spheres) • Blake, Glazebrook, Davis et al. (submitted) • DA(z), using Baryon Acoustic Oscillations (standard rulers) • Blake, Davis et al. 2011, MNRAS (in press: 1105.2862) • Blake, Kazin, Beutler, Davis et al. (submitted) • Neutrino mass, structure damping on small scales • Riemer-Sørensen, Blake, Parkinson, Davis et al. (submitted) • DA(z) and H(z), using 2D BAO’s • Davis, Blake et al. (in prep) • Homogeneity of the universe, using number density • Scrimgeour, Davis et al. (submitted) Growth of structure from redshift space distortions Baryonic Acoustic Oscillations Acceleration from Alcock-Paczynski effect
Example spectrum z=0.72 OII Hβ, OIII This light was emitted 6.5 billion years ago
Sidestep: Neutrino dark matter • Weakly interacting • Not emitting light • Too few and too light