150 likes | 159 Views
Radiation Effects in FPGAs & SEU Modelling Methodology Ketil Røed Høgskolen i Bergen. Topics. Radiation effects in the TPC Front End Electronics Single Event Upset in an FPGA Radiation testing and result Next step: SEU modelling Methodology & Preparation work. 010100 010101 010101
E N D
Radiation Effects in FPGAs & SEU Modelling Methodology Ketil Røed Høgskolen i Bergen
Topics • Radiation effects in the TPC Front End Electronics • Single Event Upset in an FPGA • Radiation testing and result • Next step: SEU modelling • Methodology & Preparation work
010100 010101 010101 101011 111100 FPGA and Single Event Upset • Field Programmable Gate Array (programmable device) • Design stored in SRAM based memory
010100 010101 010101 101011 111100 FPGA and Single Event Upset • Field Programmable Gate Array (programmable device) • Design stored in SRAM based memory • Single Event Upset Corrupt design Bit-flip in memory due to an ionizing particle
Gate Source Drain N+ + - N+ + - + - + - + - + - + - + - + - + - + - + - + - + - P substrate SEU: The main concern for the TPC electronics • Basic mechanism • Charge particle depositing energy in a device through ionization • If Qdep > Qcrit => SEU Qdep
Gate Source Drain N+ + - N+ + - + - + - + - + - + - + - + - + - + - + - + - + - P substrate SEU: The main concern for the TPC electronics • Basic mechanism • Charge particle depositing energy in a device through ionization • If Qdep > Qcrit => SEU • TPC radiation environment* • Energetic Hadrons (E > 20 MeV) • Nuclear Interaction • Short range recoil-ion, • Typically E < 10 MeV Qdep * Fasso et. at, Radiation in the ALICE TPC detector, ALICE internal Note-TRD 2003
Gate Source Drain N+ + - N+ + - + - + - + - + - + - + - + - + - + - + - + - + - P substrate SEU: The main concern for the TPC electronics p • Basic mechanism • Charge particle depositing energy in a device through ionization • If Qdep > Qcrit => SEU • TPC radiation environment* • Energetic Hadrons (E > 20 MeV) • Nuclear Interaction • Short range recoil-ion, • Typically E < 10 MeV Si(p,p α)Mg p α Mg Qdep * Fasso et. at, Radiation in the ALICE TPC detector, ALICE internal Note-TRD 2003
Irradiation Test Facilities • The Svedberg Laboratory, TSL • 38 & 180 MeV protons • 90 MeV neutrons • 106-107 p/cm2s &103-104 n/cm2s • Beam spot radius 2 & 15 cm • The Oslo Cyclotron, OCL • 29 MeV protons • 106-107 p/cm2s • Beam spot radius: 2 cm
SEU Cross Section Result (Xilinx Virtex II Pro) • TSL (180 MeV p): σ = 2.14 x 10-14 cm2 / bit • OCL (29 MeV p): σ = 2.11 x 10-14 cm2 / bit • Independent experiment by Xilinx (atmospheric neutron spectra) • Rosetta+σ = 2.98 x 10-14 cm2 / bit • Scaled to the ALICE TPC radiation environment • Simulated* hadron flux 100-400 h/cm2s • Results per 216 FPGA / 4 hr unit Run • # SEU ~120 • # functional failures+ ~12 • Conservative numbers + Using an SEUPI: Single Event Upset Probability Impact = 10 Lesea et. al. The Rosetta Experiment, IEEE TRANS. ON DEVICE AND MATERIALS RELIABILITY, V 5, N3, 2005 *Fasso et. at, Radiation in the ALICE TPC detector, ALICE internal Note-TRD 2003
Mitigation Results • Configuration memory is read back and bit-flips are corrected • The FPGA firmware design can be protected • Hamming bits • Triple Mode Redundancy • 1+2: Reduces the functional • failures to an acceptable level • Test flux: 106-107 p/cm2s • TPC flux: 100-400 h/cm2s • ~ factor 104 lower flux 1 2 3 1 1+2 No action Readback and Correction enabled Triple Modular Redundancy turned enabled
2. Next Step: SEU Modelling • Model the physical processes responsible for causing Single Event Upsets • 7 months research visit at IBM T.J. Watson Research Center, NY, USA(NFR Leiv Eiriksson mobilitetsstipend) • SEU modelling methodology • An important input is information about the target device • Layout and material (can be proprietary) • Some reverse engineering is needed
FIB: Focused Ion Beam Target Device Information • Investiagated using Focused Ion Beam tool (FIB)
Target Device Information: FIB Images ~5 um Device layer (90 nm transitors) Si substrate ~850 um Cu interconnet layer (0.4 um) FIB images are used to build a geometry model of our device
+ -+ - - - + - + - + - - + Modelling Methodology Describe physical processes • Inelastic and elastic Interactions • Nuclear fragmentation • Transportation Target information • Technology • Layout • Material Radiation environment • Particle type • Energy & flux Modelling Software Tool Radiation event generator Charge transport & collection Critical Charge < SEU
Outlook • Radiation effects are becoming more important due to technology scaling • Lower Critical Charge for SEU -> more sensitive devices • The details of nuclear fragmentation will become more important • Potential new problem: Direct ionization from protons* • Multiple Bit Upsets (MBU): more frequent • Case study of FPGA • Variability study (layout geometry) • Compare with experimental results to validate method • Radiation environment • Add more detailed geometry of electronics rack • Update simulation results *Rodbell et al , Low-energy Proton induced Single Event Upsets in 65 nm…, Presented at NSREC July 2007