640 likes | 676 Views
Explore the theory and algorithms of Empirical Mode Decomposition in signal processing, offering a data-driven wavelet-like expansion for signal analysis. Obtain AM-FM type representation from signal observations using EMD.
E N D
Empirical Mode Decomposition:a Filter Bank Viewpoint Paulo Gonçalves INRIA Rhône-Alpes, France On leave @ IST – ISR (2003-2005) Joint work with: Patrick Flandrin (CNRS, ENS-Lyon, France) Gabriel Rilling (PhD, ENS-Lyon, France) ― Jean-Claude Nunes (Post-doc, Univ. Tech. Compiegnes) IST-ISR February 2005
Empirical Mode DecompositionRelated papers Related papers • Empirical Mode Decompositions as data-driven wavelet-like expansions, P. F. and P. G. • Int. J. of Wavelets, Multiresolution and Information Processing, Vol. 2(4), pp. 477--496, 2004. • Empirical Mode Decomposition as a Filter Bank, P. F., G. R. and P. G. • IEEE Sig. Proc. Letters, Vol. 11(2), pp. 112--114, 2004. • EMD Equivalent Filter Banks, from Interpretation to Applications, P. F., P. G. and G. R. • Hilbert-Huang Transform: Introduction and Applications (N.E. Huang and S.S.P. Shen, eds.), World Scientific, 2004. To appear. • Empirical Mode Decomposition, Fractional Gaussian Noise and Hurst Exponent Estimation, G. R., P. F. and P. G. • IEEE-ICASSP, March 19-23, Philadelphia, USA 2005. • Detrending and denoising with Empirical Mode Decompositions, P. F., P. G. and G. R. • Eusipco, 12th European Signal Processing Conference, Vienna, Austria 2004. • Sur la décomposition modale empirique, P. F. and P. G. • GRETSI, Paris, France, 2003. • On empirical mode decomposition and its algorithms, G. R., P. F. and P. G. • IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado (I), 2003. • www.ens-lyon.fr/~flandrin/emd.html
EMD : principle & algorithmic definition Equivalent filter bank : a stochastic approach Equivalent filter bank : a deterministic approach Scaling exponent estimation Denoising-Detrending signal + noise mixture Open issues Outline
Objective— From one observation of x(t), get a AM-FM type representation : K x(t) = Σ ak(t) Ψk(t)k=1 with ak(.) amplitude modulating functions and Ψk(.) oscillating functions. Idea— “signal = fast oscillations superimposed to slow oscillations”. Operating mode —(“EMD”, Huang et al., ’98) (1) identify locally in time, the fastest oscillation ; (2) subtract it from the original signal ; (3) iterate upon the residual. Empirical Mode DecompositionPrinciple
Empirical Mode DecompositionAlgorithmic definition A LF sawtooth + A linear FM =
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionAlgorithmic definition S I F T I N G P R O C E S S
Empirical Mode DecompositionIntrinsic Mode Functions • Quasi monochromatic harmonic oscillations • #{zero crossing} = #{extrema} ± 1 • symmetric envelopes around the y=0 axis • IMF ≠ Fourier mode and, in nonlinear situations, IMF = several Fourier modes • Output of a self-adaptive time-varying filter (≠ standard linear filter)ex: 2 sinus FM + gaussian wave packet
Empirical Mode DecompositionIntrinsic Mode Functions Signal time Spectrum frequency Time-Frequency representation
Empirical Mode DecompositionIntrinsic Mode Functions frequency time Signal
Empirical Mode DecompositionIntrinsic Mode Functions frequency time Signal 1st IMF 2nd IMF 3rd IMF
Empirical Mode DecompositionIntrinsic Mode Functions t 1st IMF 1 2 3 3rd IMF 2nd IMF
Empirical Mode DecompositionA mathematical approach (V. Vatchev, 2002) Definition― A twice differentiable function f is an IMF if it is a solution of a self-adjoint ODE of the type: (Pf’)’ + Qf = 0for some P(t) > 0 and Q(t) > 0 for t є [a,b] Ensures that #{zero crossing) = #{extrema} ± 1 AND Q(t) = 1 / P(t) Ensures that upper and Lower envelopes U(t) and L(t) are symmetric
Empirical Mode DecompositionA mathematical approach (V. Vatchev, 2002) • Theorem―If f is solution of a self-adjoint ODE, with Q(t) = 1 / P(t) • then, f is an oscillating function with constant amplitude ! • ________ • In practice, to overcome the envelope restriction: • require |U(t) − L(t)| < ε, for some prescribed ε > 0 • modify the construction of the envelopes (???)
Empirical Mode DecompositionEquivalent Filter bank: a stochastic approach • Goal― Consider EMD as a filter bank and identify for each IMF an “equivalent” frequency response • Model―fractional Gaussian noise (fGn – derivative of fractional Brownian motion fBm) with Hurst exponent0 < H < 1 : • H = 1/2 : white gaussian noise • H < 1/2 : short range correlation • H > 1/2 : long range correlation • Power spectral density (PSD) ~ f 1-2H
Empirical Mode DecompositionEquivalent Filter bank: a stochastic approach • Goal― Consider EMD as a filter bank and identify for each IMF an “equivalent” frequency response • Model―fractional Gaussian noise (fGn – derivative of fractional Brownian motion fBm) with Hurst exponent0 < H < 1 : • H = 1/2 : white gaussian noise • H < 1/2 : short range correlation • H > 1/2 : long range correlation • Power spectral density (PSD) ~ f 1-2H
Empirical Mode DecompositionEquivalent Filter bank: a stochastic approach • Goal― Consider EMD as a filter bank and identify for each IMF an “equivalent” frequency response • Model―fractional Gaussian noise (fGn – derivative of fractional Brownian motion fBm) with Hurst exponent0 < H < 1 : • H = 1/2 : white gaussian noise • H < 1/2 : short range correlation • H > 1/2 : long range correlation • Power spectral density (PSD) ~ f 1-2H
Empirical Mode DecompositionEquivalent Filter bank: a stochastic approach • Goal― Consider EMD as a filter bank and identify for each IMF an “equivalent” frequency response • Model―fractional Gaussian noise (fGn – derivative of fractional Brownian motion fBm) with Hurst exponent0 < H < 1 : • H = 1/2 : white gaussian noise • H < 1/2 : short range correlation • H > 1/2 : long range correlation • Power spectral density (PSD) ~ f 1-2H