1 / 46

Cajun Probe Preliminary Design Review

Cajun Probe Preliminary Design Review. University of Louisiana at Lafayette Mark Roberts 11.5.2009. Table of Contents. Mission Overview Narrative Expectations Cosmic Rays Related Research Mission Requirements Mission Success Mission Benefits Expected Results Subsystems Layout

daxia
Download Presentation

Cajun Probe Preliminary Design Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cajun Probe Preliminary Design Review University of Louisiana at Lafayette Mark Roberts 11.5.2009

  2. Table of Contents • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-flight hardware & • Sensors • Canister Compliance • Logistics of Shared Canister • Management • Team • Timeline • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special Requirements • Atmospheric Port(s) • Systems Layout • Functional Block Diagram • Schematic • Geiger Circuit • Corona Discharge • Top View • Temperature Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor Specifications

  3. Mission Overview • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Objectives • Design and implement a robust, compact payload to latter be integrated into a probe. • Develop improved Geiger Counter circuit. • Testing of payload’s durability and performance under space conditions. • Obtain and analyze data for a baseline of future experiments.

  4. Expanding on RockOn 2008 • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Previous experiments have proven inconclusive with Geiger Counter circuit. Therefore, a more robust circuit and improved Geiger-Muller tube is necessary.

  5. Experiment Expectations • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Cosmic Radiation • ULL expects to quantify the cosmic radiation and analyze it’s relation to temperature(s) and pressure. • Further Development of Probe • Again, this phase of the project is just a step towards ULL’s ultimate goal which is to develop a extremely robust probe to be launched into thunderstorms. • Finally have an Improved Geiger Counter • Circuit that is robust enough to operate efficiently and properly in harsh environments.

  6. Cosmic Rays (CRs) Discovered by Victor Hess in 1912 • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Electrically charged particles that bombard Earth where the flux of the CRs will be different at different latitudes & altitudes. • CRs led to the discovery of the first muon and pion, however the main • focus of cosmic ray research is where they originate and how they are accelerated to such high velocities—their role in the dynamics of the Galaxy. • It is believed that CRs originate from outside our galaxy from active • galactic nuclei, quasars, or gamma ray bursts. • Another belief is that galactic CR’s derive their energy from supernova • explosions and evidence exists to suggest that CR’s are accelerated as the shock waves from these explosions, traveling through interstellar gas where the energy contributed to the Galaxy by the CRs is about that contained in galactic magnetic fields and in the thermal energy of the gas that it passes through.

  7. When high energy cosmic rays collide with the atoms in Earth’s atmosphere a shower of secondary particles are produced, correspondingly the frequency of particles reaching Earth’s surface is directly related to the energy of the cosmic ray(s) which can be measured with a Geiger counter.

  8. Related Research • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  9. T-MAT H°600 film showing cosmic ray tracks • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline High Energy Particles (E > 250 MeV) Low Energy Particles (E ≤ 250 MeV) Measured fluence of high & low energy protons & electrons OSL Badges

  10. Mission Requirements • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  11. Mission Success • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Success for this mission is dependent on the performance of the Geiger counter. That is, an accurate measure of the total flux of the cosmic rays with respect to altitude. • Accurate Geiger counter data consists of: • Measuring Beta particles above 50 KeV. • Measuring Gamma particles above 5 KeV. With accurate Geiger data we will be able to reproduce similar curve

  12. Benefits • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Comparison of data and efficiency with previous cosmic • ray measurements made with film and OSL badges. • UL Lafayette having an optimized Geiger circuit that will • be integrated into future experiments and into our own • High Power Rockets. • The optimized Geiger circuit will be developed into a kit • and function as an introduction to Balloon & Sounding • Rocket payloads to undergraduates and possibly used as • an outreach program as well.

  13. Expected Results • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Relevance • Comparison of data and efficiency with previous cosmic ray • measurements made with film and OSL badges. • UL Lafayette having an optimized Geiger circuit will be integrated • into a sub-system of a Probe that will be launch over and into thunderstorms in hopes to see if • Thunderstorms emit gamma radiation and • For the probe to collect vertical slices of the thunderstorm so it can be properly modeled and analyzed in hopes to further understand this phenomena and to reduce error in modeling.

  14. Subsystems • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Sensor Sub System • Temperature Sensor • Pressure Sensor • X & Y Axis Accelerometers • Z Axis Accelerometers • Geiger Counter Interface • GPS • Temperature PCB • Power Sub System • Activation • Power Regulation • Command and Data Handling • In-System Serial Programming (ISP) • Data Retrieval

  15. Subsystems Layout • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline C&DH subsystem Sensor(s) subsystem C&DH subsystem C&DH Sensor(s) subsystem Power subsystem

  16. Power Subsystem • Payload will only activate if and only if the following conditions have been satisfied: • RBF Pin has been shorted. • A vertical acceleration has engaged the G-switch for a finite amount of time. • Only at this time will the payload become active and consume current. • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline The power subsystem will supply 3.3 V, 5 V, and 9 V to respective components on the micro controller board. These specific voltages can be traced in the provided schematic of the micro controller board and will also be broken down in the following subsystems. All subsystems will operate with the ambient temperature inside the rocket.

  17. Sensor Subsystem • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline The requirements for the sensor subsystem is rather self explanatory via the title of each sensor. The sensors are sampled by the MCU’s timer which is set to a finite amount of time; the sampling time must be greater then the dead time of the Geiger Counter otherwise sampling of the Geiger counter will continually return 0 because the counter is unable to function.

  18. Command & Data Handling Subsystem (C&DH) • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • The C&DH subsystem consists of: • 16 Mb flash memory • Will be updated to 32 Mb. • A level translator for data transfer • The micro controller ATmega32 (which later might be switched out • for the ATmega324P) • In-System Serial Programming (ISP) • Data Retrieval

  19. Special Requirements • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline RockOn 2010 + RSPC Section Payload Access Section Motor Adapter RSPC Section Nose Cone PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 Customer Manifest: Team 1: RockOn 2010 Team 2: RockOn 2010 Team 3: RockOn 2010 Team 4: RockOn 2010/RSPC Team 5: RSPC Team 6: RSPC Team 7: RSPC Team 8: RSPC Team 9: RSPC Existing Ports: 1.) One optical and one pressure port in aft payload section. 2.) Four optical ports for each can in forward payload section. 3.) Three static ports for forward payload section. 4.) One dynamic (RAM) port for forward section. Existing Atmospheric Port Existing Optical Port

  20. Special Requirements • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Atmospheric Port(s) • Please specify more about the drop down line to the atmospheric/static ports I am still unsure of exactly how this is suppose to work.

  21. Systems Layout • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  22. Functional Block Diagram • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  23. Schematic of RockOn 2008 AVR Board • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  24. Geiger Counter Circuit • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Geiger-Muller Tube

  25. Corona Discharge Coronal discharge occurs in low pressure environments with high voltages present. The air around a high potential will become a conductor and emit a bluish glow (plasma). This plasma will cause adverse effects for the components as well as neighboring parts. Corona is a process by which a current develops from an electrode with a high potential in a neutral fluid, air for instance, by ionizing that fluid so as to create a plasma around the electrode. The ions generated pass charge to nearby areas of lower potential, or recombine to form neutral gas molecules. In low pressure situations air is no longer a dielectric but a conductor thus allowing an electrical discharge or arching to occur. Therefore a conformal coating to the board containing the high voltages is needed to prevent coronal discharge and will be applied to the Geiger counter circuit to prevent arching. • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  26. Top View of payload • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  27. Temperature Sensor(s) • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Small array of Temperature sensors serially connected and mounted in various spaces with either tape or adhesive • One on skin of rocket • One on Canister • One near or on mica window

  28. GPS Receiver • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline VENUS634FLPx • 51 Channel Acquisition and 14 channel tracking • 10Hz max update rate • Hot start 1 second • Cold start 29 seconds • Supports active or passive antenna • Data logging with external SPI serial Flash • 10 mm x 10 mm x 1.1 mm footprint

  29. Code Flow Chart • Code Flow assumes: • G-Switch has been triggered • RBF pin has been shorten • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Payload States: • Safe • Armed & Idle • Active Returns True Returns Fail

  30. Code Flow Explanation • The program main initializes the system by initializing the • included libraries and interrupts. • Next the ISMP is checked board connections to either program or • retrieve data. • The memory write protection latch is checked. • MCU’s timer is set up to sample the sensors for a specified time. • MCU’s timer is engaged. • The sensors are sampled at a specified interval set by timer • Converting the Analog signal to a Digital Signal. • The sensor data is then written to memory. • The Z-accelerometer latch is checked to confirm activation. • If activation returns True, then memory write protection • latch is closed. • If the Z accelerometer latch detects a false detection then • the loop will terminate, the memory write protection latch • will remain open and system will go IDLE. • LED is updated and gives visual cue of activation or not. • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline These actions are then repeated if activation is detected.

  31. Memory Budget • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Data will be stored on the onboard flash memory which is located on the MCU board. Data is collected from the sensors via the ADC channels of the MCU and then processed through the level translator and sent to flash memory. The sample function is a strut which collects data from each sensor when called in the MAIN in conjunction with the MCU timer, the function samples data. The MAIN then enters into a loop where it continuously flushes the sample strut to memory after the specified sample time; i.e. every 50 ms the sensors are sampled and flushed to memory.

  32. Sensor Specifications Single-Axis, High-g MEMS Accelerometer: ADXL78 • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Single/Dual Axis Accelerometer: ADXL103/ADXL203

  33. Sensor Specifications Dual-Axis, High-g: ADXL278 • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Pressure sensor ASDX series

  34. Sensor Specifications • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline LM50 SOT-23 Temperature Sensor 16-megabit data flash memory

  35. Sensor Specifications LM2937 500mA Low Dropout Regulator • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Maxim Low-Voltage Level translator

  36. Sensor Specifications MAXIMUM RATINGS NPN Transistor: MPS2222A • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Ultra Fast Diode: 1N4454

  37. Sensor Specifications IRF9Z14PbF PNP Transistor • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Absolute Maximum Ratings

  38. Test Plans Testing Protocol before Delivery • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Payload will be tested in following ways • Cold/Heat Test • Vacuum Test • Shock Test • Life Test Cold/Vacuum Test Shock/Stress Testing

  39. Test Plans Testing pre-flight at delivery • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • The payload will be ready to go under any environmental • testing simulating temperatures from -60°C to 100°C. • Also the payload will be ready for any shock testing that • Wallops may want to perform on their shaker tables. • The payload will also be able to undergo pressure (vacuum) • testing. The flight batteries will not be used during any/all testing. Flight batteries are only to be installed during final canister integration.

  40. Flight Batteries • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  41. Parts List Flight Hardware • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  42. Parts List Non-Flight Hardware • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline Sensors

  43. Canister Compliance • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • Payload will only activate if and only if the following conditions have been satisfied: • RBF Pin has been shorted. • A vertical acceleration has engaged the G-switch for a finite amount of time. • Only at this time will the payload become active and consume current.

  44. Logistics of Shared Canister • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline • UL Lafayette • Expansion of RockOn 2008 with improved Geiger Counter, GPS, and other modifications. • West Virginia • Multi-Instrumental payload measuring Ionosphere density, the magnetic field, and ambient temperature. • Temple • Payload consists of a vibration isolation (damping) mechanism.

  45. Team Management • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

  46. Timeline for project completion • Mission Overview • Narrative • Expectations • Cosmic Rays • Related Research • Mission Requirements • Mission Success • Mission Benefits • Expected Results • Subsystems • Layout • Power • Sensor • C&DH • Special • Requirements • Atmospheric • Port • Systems Layout • Block • Diagram • Schematic • Geiger Circuit • Corona • Discharge • Top View • Temp Sensors • GPS • Code Flow Chart • Code Explanation • Memory Budget • Sensor • Specifications • Test Plans • Flight Batteries • Parts List • Flight Hardware • Non-Flight/Sensors • Canister Compliance • Shared Canister • Management • Team • Timeline

More Related