370 likes | 390 Views
This document provides an overview of the HE-LHC and FCC-eh design goals, key technologies, beam parameters, arc optics choices, injection optics, beam extraction, collimation challenges, and electron cloud simulations.
E N D
HE-LHC and FCC-eh - CDR plan and status Frank Zimmermann, FCC Week 2017 Berlin, 29 May 2017 many thanks to the HE-LHC and LHeC/FCC-eh study groups
part 1 HE-LHC
HE-LHC design goals and basic choices physics goals: • 2x LHC collision energy with FCC-hh magnet technology • c.m. energy = 27 TeV 14 TeVx 16 T/8.33T • target luminosity ≥ 4 x HL-LHC (cross section 1/E2) key technologies: • FCC-hh magnets & FCC-hhvacuum system • HL-LHC crab cavities & electron lenses beam: • HL-LHC/LIU parameters (25 ns baseline, also 5 ns option)
integrating HE-LHC in the LHC tunnel tunnel diameter 3.8 m much smaller than FCC-hh’s 6.0 m use existing LHC tunnel without tunnel enlargement; → push for “compact” 16 T magnets (magnetic cryostats?) QRL diameter: 850 mm (LHC 750 mm), max. outer magnet cryostat size: 1200-1250 mm M. Benedikt V. Mertens, V. Parma, I. Ruehl, D. Schoerling, L. Tavian, D. Tommasini, F. Valchkova-Georgieva, V. Venturi, et al.
HE-LHC arc optics choices Y. Nosochkov, E. Todesco, D. Zhou, M. Hofer, R. Tomas
HE-LHC injection optics 24x60– full ring IR1/5 from SLHCV31.a as suggested by Stephane Fartoukh; other IRs from LHC 24 FODO cells per arc, with 60 deg. phase advance / cell same type of dipole in arc and DS T. Risselada, Y. Nosochkov, D. Zhou, M. Giovannozzi
HE-LHC arc cell magnets at 13.5 TeV *sextupolestrengths calculated for injection optics 0.3 T margin for dipole field; lowest quadrupole and sextupole gradients Y. Nosochkov, D. Zhou
HE-LHC 18-cell 60 deg arc cell • Lcell= 136.594 m, eight 14.1 m long dipoles • 28% higher beta and 3.3x higher dispersion compared to LHC much enhanced dispersion → injection energy > 1 TeV b± = 235.6 / 79.2 m, h± = 6.67 / 4.02 m Y. Nosochkov
“n1” beam stay clear arc beam-screen options revised tolerances for HL-LHC scaled LHC beam screen with pumping slots, and sawtooth structure S. Fartoukh 14 19 target n1 for HE-LHC will be determined by collimator system layout and performance FCC-hh beam screen shielded pumping slots, less electron cloud • choice
HE-LHC beam extraction doubling length of extraction kicker & septa challenging (space constraints) preferred: new kicker with reduced vertical opening & increased rise time • scaling kicker opening to (450/1000): 62 42 mm • kicker magnetic gap 72 52 mm (vacuum chamber) • 15 magnets, 0.8 T and 26.7 kA: gives 4.3 us rise time B. Goddard beam extraction system for 13.5 TeV beam in existing LHC straight → injection energy > 1 TeV
scSPS as HE-LHC injector • keep SPS geometry (6 LSS) • replace SPS by new superconducting single aperture machine • peak magnetic field 6 T → extract at 1.3 TeV- fast ramping • scSPS energy swing 50 • scSPS design asinjector option for FCC-hh F. Burkart scSPS helps for HE-LHC optics, physical & dynamic aperture, impedance effects & extraction, …
scSPS → HE-LHC transfer lines F. Burkart scSPS6 à HE-LHC2: nc (2T): 2187 m straight: 446 m nc (2T): 72 m sc (6T): 136 m scSPS4 à HE-LHC8: sc(6T): 1300 m nc (2T): 166 m straight: 280 m nc(2T): 76 m sc(6T): 468 m • filling factor: 70%, slopes for sc below 3%.
HE-LHC collimation challenge • must fit into existing straights • → scaling solution of FCC-hh not applicable • → reduced collimator gaps • - separation with NC magnets requires too much space • → shielded SC separation dipoles • → consider hollow e-lenses (under study for HL-LHC) M. Crouch, M. Giovannozzi, S. Redaelli, ThysRisselada et al.
HE-LHC triplet: length vs stay clear HL-LHC 14.3 m 8.4 m 8.4 m Q1 Q2 Q3 23 m 3.62m 3.62m HE-LHC “optimized” (NOT SLHCV3.1a) 10.4 m 10.4 m 16.1 m Q1 Q2 Q3 10 m 23 m 10 m • each quadrupole 2 m longer • overall 5.8 m longer • save space elsewhere, e.g.. with superconducting separation dipoles L. van Riesen-Haupt help/support from D. Schoerling and E. Todesco
optimised triplet: optics and beam stay clear no crossing angle, no shielding L. van Riesen-Haupt next step FLUKA simulations to determine the shielding required
HE-LHC beta* reach: scaling HL-LHC → going below b*40 cm may be difficult preliminary M. Crouch, M. Hofer, R. Tomas
HE-LHC electron cloud simulation for top energy simulation for top energy 25 ns beam 5 ns beam → FCC type chamber efficient, 5 ns requires very low SEY L. Mether, K. Ohmi, G. Guillermo
“typical day” at the HE-LHC b*=25 cm or 40 cm luminosity [1034 cm-2s-1] b*=25 cm bunch population [1011] b*=25 cm b*=40 cm b*=40 cm time [h] time [h] normalized emittance [mm] total tune shift b*=40 cm burn off faster or slower than emittance shrinkage depending on b*; tune shift grows or decreases during fill b*=25 cm b*=25 cm b*=40 cm time [h] time [h]
HE-LHC pile up & performance 25 ns bunch spacing integrated luminosity [fb-1] pile up b*= 25 cm b* =40 cm b*=25 cm b*=40 cm time [h] time [h] with 160 days of physics, 70% availability, 3 h turnaround time b*=25 cm: 820 fb-1/year b*=40 cm: 700 fb-1/year not quite 4x HL-LHC, but close
HE-LHC session at FCC Week 2017 Thursday, 1 June, afternoon, “Pavillon”
part 2 • FCC-eh / HE-LHeC / LHeC
LHeC CDR - published in 2012 afterCDR completion ERL option selected J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 J L : LHeC Study Group, J. L. Abelleira Fernandez et al., 2012 J. Phys. G: Nucl. Part. Phys. 39 075001 key numbers: operation in parallel with LHC TeVscale collision energy 50-150 GeV beam energy -power consumption < 100 MW 60 GeV beam energy -int. luminosity > 100 * HERA -peak luminosity > 1033 cm-2s-1 193 authors
LHeC progress since 2012 • “LHeC Higgs Factory” with 10x higher luminosity basedon HL-LHC ,L > 1034cm-2s-1 (e.g. F. Zimmermann et al., “The LHeC as a Higgs Boson Factory” IPAC2013) • size flexibility with various e- beam energies (CLHC/3=8.9 km ↔ 60 GeV e-, CLHC/5= 5.3 km ↔ 51 GeV e-, ...) • modular approach:LHeC-ERL added toLHC, HL-LHC, HE-LHC, FCC-eh,… → high-energy high-luminosity ep and eAcollisions • SRF collaboration JLAB-CERN to build SC cavities at 802 MHz • FCC-he & HE-LHeC parameter baseline
FCC-eh & HE-LHeC ep baselines EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017, “A Baseline for the FCC-he” Oliver Brüning, John Jowett, Max Klein, Dario Pellegrini, Daniel Schulte, Frank Zimmermann
simulatedFCC-eh performance EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017, “A Baseline for the FCC-he” Daniel Schulte
FCC-eh & HE-LHeC eA baselines EDMS 17979910 FCC-ACC-RPT-0012 V1.0, 6 April, 2017, “A Baseline for the FCC-he” John Jowett, F.Z.
FCC-eh key design questions • beam current limit in multi-turn ERL • interaction-region design: final quadrupole magnets, synchrotron-radiation inside detector, machine-detector interface • IP choice for FCC not fixed, IP tentatively FCC point L; detailed integration study depends on location Oliver Brüning, John Osborne, Max Klein
PERLE – ERL test facility key purposes: • demonstrate and investigate multi-turn, high current energy recovery in a racetrack electron linac– the basis of FCC-eh, HE-LHeC, and LHeC • high current load tests of SRF cavities - e.g. testing FCC prototypecavities at 800 and 400 MHz PERLE CDR accepted for publication in J. Phys. G. http://arxiv.org/abs/1705.08783 proposed construction at LAL-Orsay O. Brüning, W. Kaabi, M. Klein, D. Pellegrini, R. Rimmer, D. Schulte, A. Stocchi, A. Valloni et al.
LHeC/FCC-eh/FCC RF system straightforward integration into SNS type cryostat 400MHz, 1 cell, Nb/Cu R. Rimmer,O. Brunner, et al. 400/800 MHz, multi-cells, Nb/Cu
PERLE at Orsay(LHeC Test Facility) construction in stages; JLAB will deliver first cryomodule A. Bogacz, O. Brüning, M. Klein, D. Pellegrini, R. Rimmer, D. Schulte, A. Stocchi, A. Valloni et al.
LHeC/FCC-eh interaction region non focused beam bypasses the interaction focusedinteracting proton beam synchrotron radiation and various beams must exist SR fan example “sweet spot” Q1 design electron beam from ERL B. Parker, S. Russenschuck et al. E. Cruz, R. Tomas, F. Zimmermann et al.
LHeC/FCC-eh IP choices / integration (HE-)LHeC / FCC-he LHC P8 & FCC PB independent FCC-he Point L, F, H or B LHeC/HE-LHeCmachine variants C. Cook,J. Osborne, J. Stanyard
LHeC/FCC-eh workshop 2017 CERN, September 11-13 Supported in part by the European Commission under the HORIZON2020 Integrating Activity project ARIES, grant agreement 730871. https://indico.cern.ch/event/639067/ http://lhec.web.cern.ch/ 2017 workshop discusses the LHeC/HE-LHeC/FCC-eh physics, accelerator, test facility and detector developments, in view of the documents to be prepared on the LHeC(“LHeC Book”) and the FCC-eh (FCC CDR), which will be input to the deliberations of the forthcoming European and global strategy debates Nestor Armesto, Oliver Brüning, Max Klein, Herwig Schopper, Achille Stocchi and Colleagues, with Celine Le Bon
FCC-eh sessions at FCC Week 2017 Thursday, 1 June, afternoon, “Charlottenburg I+II”