420 likes | 527 Views
Evaluation of a Proposed Method for Representing Drug Terminology James J. Cimino, Timothy J. McNamara, Terri Meredith, Carol A. Broverman, Karen C. Eckert. Drug Terminology Efforts in HL7. Need for medication terms Much source data generated by pharmacy systems
E N D
Evaluation of a Proposed Method for Representing Drug TerminologyJames J. Cimino, Timothy J. McNamara, Terri Meredith, Carol A. Broverman, Karen C. Eckert
Drug Terminology Efforts in HL7 • Need for medication terms • Much source data generated by pharmacy systems • Pharmacy knowledge base vendors are exploring ways to place their terminologies in the public domain • Vocabulary TC convened meetings to explore ways of collaborating
Disclaimer • Nothing is a balloted standard yet • TC has not yet proposed a formal model • TC has not yet proposed a plan of action • TC is still defining scope and goals
Drug Model Hierarchy Packages Medications Drug Class International Package Identifiers Chemicals is-a Not-Fully-Specified Drug is-a Ingredient Class is-a Country-Specific Packaged Product Clinical Drug is-a is-a is-a Ingredient Composite Clinical Drug Trademark Drug is-a is-a Manufactured Components Composite Trademark Drug
Drug Model Hierarchy Packages Medications Drug Class International Package Identifiers Chemicals is-a Not-Fully-Specified Drug is-a Ingredient Class is-a Country-Specific Packaged Product Clinical Drug is-a is-a is-a Ingredient Composite Clinical Drug Trademark Drug is-a is-a Manufactured Components Composite Trademark Drug
Clinical Drugs • Dosage form • Active ingredients • Chemical • Form Strength • Strength amount • Strength units • Volume • Volume units
Experiment • Can model allow for interoperability? • Single terminology vs. • Mapping between terminologies • Select random sample of drug terms • Obtain descriptions from terminology developers • Compare description components • Examine overall match rate
Sample Selection • 71,000 NDC Codes • 1000 selected at random (1.4%) • Many are obsolete
Descriptions from Vendors NameFormIngredient 1 Ingredient 2 Valium 5mg Tablet Tablet Diazepam ^5^mg Tylenol #3 Tablet Acetaminophen Codeine ^325^mg ^30^mg Chloral Hydrate Syrup Syrup Chloral Hydrate 100.000000^mg^1.000000^ml
Descriptions from Vendors ABCDENone - 340 358 326 357 642 340 - 452 361 449 541 358 452 - 393 554 395 326 361 393 - 392 395 357 449 554 392 - 434 Overall, 367 terms were not represented in any set, 71 appeared in only one set, 77 appeared in exactly two sets, 83 appeared in three sets, 91 appeared in four, and 311 terms appeared in all five terminologies. SetMapped A 358 B 459 C 605 D 405 E 566
Pairwise Comparisons SetBCDE A 340 358 326 357 B 452 361 449 C 393 554 D 392 E
Pairwise Comparisons { SetBCDE A 340 358 326 357 B 452 361 449 C 393 554 D 392 E 3982
Comparisons • Dosage Form: 3982 • Ingredient (number and match): 5507 • Dose Strength (dose, units, volume, volume units): 4337 • Overall: 3982
Dosage Form Matching • TAB = TABLET • LIQUID ORAL LIQUID • 111 Dosage form synonyms
Ingredient Matching • HCl vs. Hydrochloride • Salt vs. Base • Inclusion of form or route • Mention of animal source
Dose Strength Matching • Standard format (000050000 vs. 500.00) • Normalization of units (GM vs. MG)
Dose Units Matching • Standard abbreviations • Normalization of units (GM vs. MG) • Missing values • Inclusion of concentration information • MG vs. %
Dose Volume Matching • Not given • Different numeric formats • Defaults (0 and 1) • Different volumes ( per 1ml vs per 5ml)
Dose Volume Units Matching • Not given • “Each” • Different abbreviations
Overall Matching • Form matches • Same number of ingredients • Each ingredient matches on chemical and all four other parameters
53% Overall Matching
Pairwise Comparisons SetABCDE A - 340 358 326 357 B 340 - 452 361 449 C 358 452 - 393 554 D 326 361 393 - 392 E 357 449 554 392 -
Pairwise Complete Matches SetABCDE A - 59% 45% 48% 52% B 59% - 54% 63% 62% C 45% 54% - 46% 48% D 48% 63% 46% - 58% E 52% 62% 48% 58% -
Example of Mismatch GUAIFENESIN AC LIQUID|10;100|MG/5ML;MG/|LIQUID SYRUP| GUAIFENESIN^00000000.000^^0000.000^ CODEINE PHOSPHATE^.^^.^ LIQUID| CODEINE PHOSPHATE^2.000000^MG^^ GUAIFENESIN^20.000000^MG^1.000000^ML LIQUID, ORAL (SYSTEMIC)| CODEINE PHOSPHATE^10^MG^5^ML GUAIFENESIN^100^MG^5^ML LIQUID| CODEINE PHOSPHATE^10.0000^MG/5ML^^ GUAIFENESIN^100.0000^MG/5ML^^ SYRUP| CODEINE PHOSPHATE^10^MILLIGRAM(S)^5^MILLILITER(S) GUAIFENESIN^100^MILLIGRAM(S)^5^MILLILITER(S)
Example of Mismatch BUMEX INJECTION|0.25|MG|INJ-SOL AMPUL BUMETANIDE^00000000.250^MG^0001.000^ML INJECTION SODIUM CHLORIDE, IV USE^0.850000^%^^ BUMETANIDE, INJECTABLE^0.250000^MG^1.000000^ML INJECTION BUMETANIDE^0.25^MG^1^ML SOLUTION BUMETANIDE^0.2500^MG/ML^^ SOLUTION BUMETANIDE^0.25^MILLIGRAM(S)^1^MILLILITER(S)
Example of Mismatch RECOMBIVAX HB ADULT FORMULATION INJECTION|10|MCG|INJ-SUS VIAL HEPATITIS B VIRUS VACCINE^00000010.000^MCG^0001.000^ML INJECTION HEPATITIS B SURFACE ANTIGEN^10.000000^MCG^1.000000^ML INJECTION HEPATITIS B VACCINE-RECOMBINANT^10^MCG^1^ML INJECTION HEPATITIS B VIRUS VACCINE RECOMBINANT^10.0000^MCG/ML ^^ SOLUTION HEPATITIS B VACCINE RECOMBINANT^10^MICROGRAM(S)^ 1^MILLILITER(S)
Focus on Dosage Form • 3982 comparisons • 111 synonyms • 72% match rate • What went wrong?
Examination of Dosage Forms • Compare use of each form, in each source, with use in other sources for corresponding medications • Look for irregularities in source • Look for 100% agreement • When not 100% agreement, look at hierarchical subsumption
Irregularities in Sources NDC: 0000153144|FLUORITAB TABLETS CHEWABLE CHERRY|1.1|MG| TAB CHEW|100|BOT: A:: |FLUORITAB 0.5MG TABLET CHEW^SODIUM FLUORIDE| CHEWABLE TABLET|SODIUM FLUORIDE^00000000.500^MG ^0000.000^ B: |FLUORITAB CHERRY TABS CHEW, 0.5MG|CHEWABLE TABLET| SODIUM FLUORIDE^1.100000^MG^^ C: |SODIUM FLUORIDE CHEW TAB 1.1 MG (0.5MG F)|CHEWABLE TABLET|SODIUM FLUORIDE^1.1000^MG^^ D: ||TABLET|SODIUM FLUORIDE^0.5^MG^^
Tablet Sodium Fluoride 1.1 MG Tablet is-a Chewable Tablet is-a Sodium Fluoride 1.1 MG Chewable Tablet B C Near Misses and the Hierarchy D A
Irregularities in Sources NDC: 0000014889|PROPRANOLOL HYDROCHLORIDE EXTENDED RELEASE CAPSULES|80|MG|CAP ER|100|BOT A: ||CAPSULE CR|PROPRANOLOL HYDROCHLORIDE^80^MG^^ B: |PROPRANOLOL 80MG CAPSULE SA^PROPRANOLOL HCL| CAPSULE CR|PROPRANOLOL HCL^00000080.000^MG^0000.000^ C:: |PROPRANOLOL HCL CAP CR 80 MG|CAPSULE CR| PROPRANOLOL HYDROCHLORIDE^80.0000^MG^^ D:: |PROPRANOLOL HYDROCHLORIDE^80 MG|CAPSULE CR| PROPRANOLOL HYDROCHLORIDE^80^MILLIGRAM(S)^1^EACH E:: |PROPRANOLOL HCL TABS CR, 80MG|TABLET CR|PROPRANOLOL HYDROCHLORIDE^80.000000^MG^^
Example of 100% Agreement A: LOTION: 1: LOTION| B: LOTION: 1: LOTION| C: LOTION: 1: LOTION| D: LOTION: 1: LOTION| E: LOTION: 1: LOTION|
Example of 100% Agreement A: TABLET CR: 14: TAB E REL|TAB FC ER B: TABLET CR: 6: TAB FC ER|TAB SUG CO| C: TABLET CR: 9: TAB FC ER|TAB E REL| D: TABLET CR: 14: TAB E REL|TAB FC ER|TAB FC| E: TABLET CR: 7: TAB FC ER|TAB E REL|
Example of <100% Agreement A: AEROSOL: 2: INHALANT|AEROSL SPR| B: AEROSOL: 1: INHALANT| C: AEROSOL: 1: INHALANT| SPRAY, TOPICAL, DERMAL: 1: AEROSL SPR| D: AEROSOL: 2: INHALANT|AEROSL SPR| E: AEROSOL: 1: INHALANT|
Aerosol Terbutaline Sulfate 0.2mg/ACT Aerosol Triamcinolone Acetonide 0.147mg/GM Aerosol is-a A A Inhaled Aerosol Dermal Aerosol D is-a is-a B Triamcinolone Acetonide 0.147mg/GM Dermal Aerosol Terbutaline Sulfate 0.2mg/ACT Inhaled Aerosol C C E Handling Ambiguity
Example of Subsumption Aerosol (): A(AEROSOL) D(AEROSOL) Inhaled Aerosol (INHALENT): B(AEROSOL) C(AEROSOL) E(AEROSOL) Dermal Aerosol (AEROSL SPR): C(SPRAY TOPICAL, DERMAL)
No Solution for Solution AMPUL DROPS INFUS. BTL INJECTION IRRIGATION SOLUTION IV SOLN. KIT PIGGYBACK PLAST. BAG SKIN TEST SOLUTION SYRUP VIAL ELIXIR INJ REPOSITORY INJECTION INJECTION TYPE INJECTION IVPB KIT LIQUID SOLUTION SUSPENSION DROPS, OPHTHALMIC (NON-SYSTEMIC) INJECTION IRRIGATION SOLUTION KIT, INJECTION (SYSTEMIC) SOLUTION FOR DROPS, OTIC SOLUTION FOR INHALATION... SOLUTION OPHTMALMIC… SOLUTION, ORAL (SYSTEMIC) SOLUTION, OTIC SOLUTION, TOPICAL, DERMAL SYRUP CONCENTRATE INJECTION KIT NEBU OIL SOLUTION SYRUP
Discussion • Matching is still far from perfect • Not surprising, given lack of standards for attribute values • Next steps
Discussion: Next Steps • Define some rules for each field • Select new random sample • Find subset with good overlap across terminologies • Submit descriptions of new subset
Discussion: New Rules • Dose forms: separate translation step • Ingredients: • Right number • Specific chemical entity • Identifiers (UMLS?) • Don’t mix in route or concentration • Strengths: • Conversion algorithms • Rules for defaults • Don’t mix route or concentration with strength
Conclusions • Glass half empty: • How can we do automated translation of patient data? • Can drug order transfers and decision support be safe? • Glass half full: • No attempt yet to standardize attribute terminology • Most translation was much better than 50% • Just getting started • Better than what we do now