300 likes | 459 Views
Évaluation des examens complémentaires dans la démarche médicale : Prescriptions utiles et inutiles. F. KOHLER. Module 1 : Item 4. Argumenter l’apport diagnostique d’un examen complémentaire, ses risques et son coût. Faire l’analyse critique d’un compte rendu d’examen.
E N D
Évaluation des examens complémentaires dans la démarche médicale : Prescriptions utiles et inutiles F. KOHLER
Module 1 : Item 4 • Argumenter l’apport diagnostique d’un examen complémentaire, ses risques et son coût. • Faire l’analyse critique d’un compte rendu d’examen. • Prendre en compte les référentiels médicaux. • Rédiger une demande d’examen complémentaire et établir une collaboration avec un collègue
Argumenter l’apport diagnostique d’un examen complémentaire, ses risques et son coût. • Pour faire le choix entre différents examens, quelles caractéristiques ? • Fiabilité/Reproductibilité • Validité de l’examen • Dépistage ou Confirmation diagnostic • Risques • Acceptabilité • Coût
Fiabilité/Reproductibilité • Plus un examen est reproductible plus il est fiable • La reproductibilité peut être mesurée par le coefficient de Kappa
Kappa • Soit le tableau des résultats (+ et -) pour 2 réalisations A et B • concordance observée = concordance réelle + concordance aléatoire. • La concordance observée est p0 = (a+d)/N • La concordance aléatoire est calculée sous l'hypothèse d'indépendance de A et B • a' = n1*N1/N et d' = n2*N2/N • sont les effectifs théoriques • pc = a’+d’/N • Kappa = (concordance réelle/ concordance non aléatoire) • KAPPA = • On admet que la concordance est : • bonne si Kappa > 0,6 • mauvaise si Kappa < 0,3 • intermédiaire entre les deux.
Validité de l’examen • C’est sa capacité à identifier la maladie ou suivre un traitement • 2 types d’examens • Examen avec réponse Positif/Négatif (recherche de BK dans les crachats/tuberculose) • Examen avec réponses quantitatives (glycémie/diabète) => Problème du seuil • Identification de la maladie • Examen de référence : gold standard
Validité de l’examen • Sensibilité/Spécificité d’un test • Courbe de ROC • Indice de Youden et rapport de vraisemblance • Règle de Sackett • Prévalence de la maladie • Valeur prédictives positive et négative • Gain diagnostic d’un test
Sensibilité et spécificité • Sensibilité = fréquence des tests positifs chez les malades • Sensibilité = a/n1 • Spécificité = fréquence des tests négatifs chez les sujets sains • Spécificité = d/n2 • Pour évaluer ces fréquences, il faut un groupe de malade => Gold standard • Sensibilité et spécificité sont indépendantes de la prévalence de la maladie • Intérêt de les évaluer par des études cas/témoins • Attention n1/(n1+n2) ne donne pas nécessairement la prévalence
Courbe de ROC • Receiver operating characteristic pour la détection des avions ennemis par les radars • Résultat du test quantitatif • En fonction de la limite que l’on se fixe pour dire que le test est positif, on obtient différentes valeurs de sensibilité et de spécificité
Courbe de ROC P(T+ / M-) = 1- P(T-/M-) = 1- Spécificité Nombre de sujets Sujets diabétiques Sujets non diabétiques 1 g/l 2,1 g/l Limite L de la glycémie au-delà de laquelle on dit le test positif P(T- / M+) = 1- P(T+/M+) = 1- Sensibilité
1 0 1 Courbe de ROC • Pour chaque valeur de la limite L du critère quantitatif, on a une valeur de la sensibilité et de la spécificité. On obtient ainsi 1 point de la courbe. En faisant varier la limite L on obtient d’autres points. • La courbe joignant les points est la courbe de ROC • Les valeurs de sensibilité et spécificité en fonction de L peuvent être obtenues par l’observation ou par la modélisation du phénomène par une loi de probabilité Sensibilité 1-Spécificité
Courbe de ROC • Aire sous la courbe : AROC • Entre 0,5 (examen au hasard : pile ou face) et 1 (examen parfait) • Instrument privilégié d’évaluation et de comparaison des performances diagnostiques des examens complémentaires
Indice de Youden et rapport de vraisemblance • Le test idéal sensibilité = 1 et spécificité = 1 n’existe pas • Indice de Youden Y = Se + Sp – 1 • Rapports de vraisemblance • RV+ : L = • Un sujet a L fois plus de chance d'avoir le test positif s'il est atteint de la maladie que dans le cas contraire • RV- :
Valeur diagnostic d’un test • La valeur diagnostique d'un test est d'autant plus grande que l'indice de Youden est plus proche de 1. L'apport diagnostique d'un résultat positif du test est d'autant plus grand que le RV+ (L) est plus élevé. L'apport diagnostique d'un résultat négatif d'autant plus grand que le RV- est plus petit et proche de zéro. • B.Grenier
Règle de Sackett • Si un test a une spécificité élevée, un résultat positif confirme l’hypothèse diagnostic • Si un test a une sensibilité élevée, un résultat négatif élimine le diagnostic
Prévalence de la maladie • C’est la fréquence de la maladie dans la population considérée (pourcentage de cas) • Attention : La prévalence dépend notamment de : • La zone géographique (palu en Afrique et en France) • De la sélection de la population • Exercice libéral/hôpital • Présélection par un dépistage
Valeurs prédictives • VPP : C’est la probabilité d’avoir la maladie quand le test est positif • VPN : c’est la probabilité de ne pas avoir la maladie quand le test est négatif • VPP et VPN dépendent de 3 paramètres • Sensibilité • Spécificité • Prévalence • Attention elles ne se calcule directement sur le tableau à 4 cases que si n1/(n1+n2) représente la prévalence de la maladie ce qui est le cas si l’étude a été menée sur un échantillon représentatif mais ce n’est pas le cas dans une étude cas témoins qui aurait été utilisée pour déterminer la sensibilité et la spécificité. • Elles se calculent dans tous les cas par le théorème de Bayes ou l’arbre des probabilités
Si l’étude est faite sur un échantillon représentatif, n1/N est la prévalence de la maladie. On peut calculer Se et Sp Se =a/n1 = VP/(VP+FN) Sp = d/n2 = VN/(FP+VN) Dans ce cas particulier, on peut calculer directement à partir du tableau les VP VPP = a/N1 = VP/(VP+FP) VPN = d/N2 = VN/(VN+FN) Valeurs prédictives • VP : Vrai positifs • VN : Vrai négatifs • FP : Faux positifs • FN : faux négatifs
Valeurs prédictives • Théorème de Bayes Test Positif Sensibilité Malade 1 - Sensibilité Prévalence Test Négatif Test Positif 1 - Spécificité 1 - Prévalence Non Malade Spécificité Test Négatif
VPP, VPN : exemple • Le paludisme a une prévalence de 90% en Afrique et de 0,001 (1 pour mille) en France. Un test biologique est utilisé pour le diagnostic avec une sensibilité de 95% et une spécificité de 85%. Quelles seront les probabilités pour des patients Africains et Français d’avoir le paludisme quand le test est positif et inversement de ne par avoir la maladie quand le test est négatif ? Pour un test donné, quand la prévalence augmente, la VPP augmente et la VPN diminue
Gain diagnostic d’un test • Gain diagnostic positif • C’est la différence entre la probabilité pré-test (prévalence) de la maladie et la probabilité post-test (valeur prédictive positive) • Gain positif = VPP – prévalence
Dépistage, confirmation diagnostique • Dépistage : • S’adresse à des sujets ne se plaignant de rien à priori sains • Prendre un test à sensibilité élevée • Éventuellement suivi d’un test de confirmation • Confirmation d’une maladie suspectée • Prendre un test avec une spécificité élevée d’autant plus que le coût su faux positif est élevé
Risques • Risque que le résultat du test ne reflète pas la réalité : • Affirmer une maladie à la vue d’un résultat positif du test : VPP => Risque de se tromper 1-VPP • Rejeter une maladie à la vue d’un résultat négatif du test : VPN => Risque de se tromper 1-VPN • Se méfier de la répétition des examens : • Au-delà de trois répétition, le risque d’être faux positif augmente : • La spécificité de l’examen diminue fortement alors que la sensibilité ne varie que peu • Risque de iatrogénie • De l’examen lui-même • De l’examen de confirmation • Du à la répétition des examens
Acceptabilité des examens • Obligation de l’information du patient des bénéfices risques attendus de l’examen • Obligation légale reaffirmée par la loi du 4 mars 2002 • Obligation de se conformer au choix du patient • C’est le patient qui fait le choix, le médecin est là pour éclairer sa décision en prenant en compte la nature de l’examen, la gravité de la maladie potentielle, les conditions socio-culturelles, les facteurs moraux et éthiques pour adapter sa communication
Coût de l’examen • A distinguer : • Coûts directs de l’examen • Coûts indirects : arrêt de travail, perte de production… • Indicateur • Efficience = Coût / Efficacité • Effectivité = Coût / Efficacité en situation réelle
Analyse critique d’un compte rendu d’examen • Dépend de la nature de l’examen • Biologie • Test positif ou Négatif • Valeur quantitative à comparer à des bornes • Imagerie, anatomopathologie • Description des lésions • Interprétation diagnostique • La malignité d’une lésion est jusqu’alors un diagnostic anatomopathologique. • Épreuves fonctionnelles • Cinétique des événements • Un CR doit comporter • L’identification du patient (nom, prénom, date de naissance, sexe) • La date de l’examen (date de prélèvement si nécessaire) et date du résultat • La finalité de l’examen (objectifs attendus) et le contexte clinique de réalisation • La nature de l’examen et les méthodes utilisées • Le résultat • Nom du médecin ayant réalisé, validé, interprété l’exame
Prendre en compte les référentiels médicaux • Rejoint la question 3 et la question 12 • Les 5 niveaux de preuve et les 4 grades de l’ANAES • Référentiels médicaux • Guides de bonnes pratiques cliniques • Références médicales opposables • Rôles de l’ANAES • Attention la loi de juillet 2004 met en place une nouvelle organisation
Les 5 niveaux de preuves • Les 5 niveaux de preuve de la médecine basée sur les preuves (Evidence Based Medicine) • Niveau 1 (le plus élevé) • Revue systématique d’essais randomisés : méta-analyse • Niveau 2 • Au moins un essai randomisé • Niveau 3 • Pas d’essai randomisé, étude de cohorte, étude cas témoins… • Niveau 4 • Étude d’observation dans plusieurs groupes indépendants • Niveau 5 (le plus faible) • Opinion d’experts, opinion d’autorités reconnues
Les 4 grades de l’ANAES • Grade A (le plus élevé) • Essais randomisés puissants de qualité, méta-analyse • Grade B • Essais randomisés de faible puissance, essais comparatifs non randomisés, étude de cohorte • Grade C • Cas/témoins, études de séries de cas • Grade D • Accord professionnel
Rédiger une demande d’examen complémentaire et établir une collaboration avec un collègue • Les éléments de la demande • Identification du prescripteur, • Identification du patient • Nature de l’examen demandé • Objectif de la demande et stratégie envisagée • Élément clinique du dossier pertinent pour la continuité de la prise en charge et le bon déroulement de l’examen (allergie, condition particulière, affections suspectées…) • Urgence de la demande • Identification du ou des destinataires des résultats