1 / 51

Programma

Programma. 1. Equilibrio e fattori di scostamento: linkage disequilibrium e mutazione 2. Equilibrio e fattori di scostamento: deriva, flusso genico e selezione 3. Mantenimento dei polimorfismi 4. Introduzione al coalescente. Programma 3. Generalità sul coalescente Un’applicazione.

deiter
Download Presentation

Programma

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Programma • 1. Equilibrio e fattori di scostamento: linkage disequilibrium e mutazione • 2. Equilibrio e fattori di scostamento: deriva, flusso genico e selezione • 3. Mantenimento dei polimorfismi • 4. Introduzione al coalescente

  2. Programma 3 • Generalità sul coalescente • Un’applicazione

  3. La genetica studia la trasmissione ereditaria dal passato al presente forward

  4. Ma quando si lavora su popolazioni si raccolgono dati sul presente e si cerca di risalire al passato ? ? backward

  5. Cos’è un modello? Definire il modello Esplorarne le proprietà Stimare parametri dai dati Confrontare dati osservati e attese del modello La teoria coalescente è un modello di evoluzione, vista come processo genealogico Nella teoria coalescente la trasmissione ereditaria viene trattata indipendentemente dal processo di mutazione

  6. Costruiamo (procedendo verso il passato) la genealogia materna di un gruppo di individui Due possibilità: o ogni individuo ha una madre diversa: O due individui hanno la stessa madre Chiamo questo fenomeno coalescenza

  7. Assunzioni del coalescente classico (Kingman 1982) Neutralità Siti infiniti Se gli individui sono diploidi e le dimensioni della popolazione sono N, il modello vale per 2N copie aploidi e indipendenti del gene Unione casuale entro la popolazione Dimensioni della popolazione costanti (*) Generazioni non sovrapposte Parliamo di caratteri a trasmissione uniparentale

  8. Ricostruire la storia di una popolazione Passato Presente

  9. Genealogie N = 10 N costante n = 6 9 generazioni

  10. Genealogie MRCA

  11. Genealogie MRCA

  12. Mutazione

  13. Mutazione CAATG CAATA CAGTG TAATA TAACA 1 2 3 3 4 5 1 TAACA TAATA CAATG CGGTG CAGTG CAGTG

  14. Non sempre l’albero ricostruito sulla base delle mutazioni è molto informativo 2 3 1 4 5 CGGTG CAGTG CAATG TAATA TAACA Possiamo capire qualcosa di più?

  15. Nel risalire dal presente al passato incontriamo una successione di eventi di coalescenza. Conseguenze: 1. In un campione di r individui alla generazione 0, il numero di antenati 1, 2,…n generazioni fa (ξ1, ξ2, ..ξn) decresce fino ad arrivare a 1: r = ξ0 ξ1 ξ2, ..ξn Ogni genealogia viene ricondotta necessariamente a un singolo antenato comune (MRCA). Non è possibile discriminare fra monofilia e polifilia

  16. Nel risalire dal presente al passato incontriamo una successione di eventi di coalescenza. Conseguenze: N1=8 N0=8 ? 2. Se la popolazione è stazionaria (N costante), N donne hanno una madre fra le N donne della generazione precedente. La probabilità di coalescenza è vicina a 1/N

  17. Nel risalire dal presente al passato incontriamo una successione di eventi di coalescenza. Conseguenze: 3. La probabilità P(n) che n alleli abbiano n antenati distinti alla generazione precedente diminuisce con le dimensioni del campione (più grande il campione, più grande la P di almeno un evento di coalescenza)

  18. Dimensioni effettive A A AA YXXX mtmt 4. La dimensione effettiva della popolazione è proporzionale a: NC = 2 NeA = 4 NeX = 3 NeY = 1 Ne mt = 1 AA A A YXXX mtmt

  19. Nel risalire dal presente al passato incontriamo una successione di eventi di coalescenza. Conseguenze: 5. I tempi medi di coalescenza aumentano procedendo verso il passato

  20. Nel risalire dal presente al passato incontriamo una successione di eventi di coalescenza. Conseguenze: Tempo atteso per passare da k a (k-1) antenati: Tk = 4N/[k(k-1)], o 2N per geni a trasm. uniparentale 6. Il tempo atteso fra due eventi di coalescenza è distribuito esponenzialmente. E(T)=4N: Wright-Fisher

  21. 1. Possiamo stimare alcuni parametri: E(TMRCA)=2N= 20 generazioni2. Possiamo simulare genealogia e mutazioni 1 2 3 3 4 5 1 TAACA TAATA CAATG CGGTG CAGTG CAGTG

  22. Programma 3 • Generalità sul coalescente • Un’applicazione

  23. The starting point: genetic variation SE-NW gradients in European allele frequencies (Piazza, 1993)

  24. Correlations with archaeology A map describing the diffusion of Neolithic industries from Cavalli-Sforza et al. (1994)

  25. Estimated ages of mitochondrial haplogroups (Kyrs) Richards Sykes Richards et al. 1996 1999 et al. 2000 H(1) 23.5 11.0-14.0 15.0 - 17.2 HV 29.3 - 37.6 J(2A) 23.5 8.5 6.9 - 10.9 T(2B) 35.5 11.0-14.0 9.6 - 17.7 IWX(3) 50.5 11.0-14.0 X: 20.0 I: 19.9 - 32.7 K(4) 17.5 11.0-14.0 10.0 - 15.5 U(5) 36.5 5: 50.0 44.6 - 54.4 Major extant lineages throughout Europe predate the Neolithic expansion

  26. Or did the ancestors of most Europeans live in the Levant before the Neolithic period? Is the European gene pool derived from the genes of the first Paleolithic colonisers? W E W E

  27. There are significant practical implications Frequency of the F-508 mutation on total CF mutations (from CFGAC 1994)approx. age 52,000 years

  28. Why are genes distributed the way they are? • Because they could not be distributed otherwise:selection • Because their distribution reflects demographic history:random genetic drift and migration

  29. How can we tell selection from drift/gene flow? a.By neutrality tests (Tajima’s D, Fu’s Fs, etc.) • However: D<0: Excess of rare alleles: Selection against deleterious alleles or population expansion • D>0: Excess of intermediate-frequency alleles: Balancing selection or population bottleneck

  30. How can we tell selection from drift/gene flow? b.Gene flow, bottlenecks, founder effects, etc. affect all genes equally, whereas selection acts differently upon different genes • Compare patterns of variation across some of the 30,000 human loci Difficult to infer migration from studies of single genes

  31. Gene trees, population trees Gene trees are unknown, but we can reconstruct some of their features assuming mutations occurred at a constant rate (=no selection)

  32. Population-genetics theory describes the expected features of gene trees in terms of population parameters T2=2N 4N T5=N/5 For nuclear genes, Exp time from k to (k-1) ancestors: Tk = 4N/[k(k-1)] generations (large std. errors)

  33. If two populations are isolated, the final coalescence is 2N generations before the split past Exp (T) = 4N Exp(T2) = 2N Exp  = T/2 T: gene divergence T2=2N Origin of the B population B A : population divergence present

  34. If there is initial polymorphism, the final coalescence may be much more than 2N generations before the split past T>> T2=2N Origin of the B population B A present

  35. Gene divergence predates population divergence: T is equal to  only if 2 Ne =0 past E(T-) = 2 Ne generations T: gene divergence : population divergence present

  36. Only if there is a population bottleneck or a founder effect does  approximate T past Phylogeographic analyses require the assumption of strong founder effects 2Ne very small  T present

  37. Is it safe to assume that most human populations originated from a founder effect? Evidence for rapid expansion (110-40 Kyrs ago) in farming populations Evidence for shrinking in hunting-gathering populations, possible caused by competition with early farmers (Excoffier & Schneider 1999) Necessary to test for founder effects reduced genetic diversity at several loci in a population

  38. Simulation of two expanding populations: No founder effect N0 = N0 = 400 Founder effect N0 = N0 = 4

  39. Ages of molecules are not ages of populations Initial polymorphism results in overestimation of the population’s age Population’s age Coalescence time From Krings et al. (1997)

  40. Any conclusions? • Robust inferences on past population processes are complicated • No shortcuts: allele genealogies are not population genealogies • Archaeologists need geneticists to tell demographic from cultural processes • Geneticists need archeologists to identify good hypotheses to test

  41. Sintesi 1 • Il coalescente fornisce un modello di evoluzione basato sull’indipendenza fra processo genealogico e processo mutazionale • Tramite il coalescente si possono stimare parametri sulla base di assunzioni esplicite e simulare geenalogie di geni

  42. Sintesi 2 Vantaggi del coalescente: • Rende esplicite le assunzioni; • fornisce misure di incertezza; • non tratta (a differenza degli approcci filogeografici) i polimorfismi come mutazioni fissate.

  43. Però: • Se avessimo raccolto dati 10mila anni fa avremmo individuato un MRCA più antico • Dati raccolti fra 10mila anni individueranno un MRCA più recente e quindi • Il nostro MRCA può avere un valore speciale per noi, ma non ha alcun particolare significato evolutivo

  44. Appendice: mismatch distribution in genealogie femminili e maschili

  45. Maternal or paternal genealogies past present Expanding population Stationary population

  46. Nucleotide substitutions in the chromosomes of different individuals Only a few are shared Many are shared

  47. Distributions of pairwise sequence differences, or mismatch distributions Unimodal Multimodal Peak ◄► age of expansion Many peaks Tajima’s D < 0 Tajima D n.s. (= balancing selection) (= stabilizing selection)

  48. 1. Rapid pop. growth inferred from mtDNA, 110-40 Kyrs BP (Excoffier & Schneider 1999) 2. No evidence of growth in Y SNP mismatch distributions (Pereira et al. 2001; Dupanloup et al. 2003) Tajima’s D < 0 Tajima’s D = 0

More Related