1 / 16

...visualizing classifier performance

...visualizing classifier performance. Tobias Sing Dept. of Modeling & Simulation Novartis Pharma AG Joint work with Oliver Sander (MPI for Informatics, Saarbr ü cken). Classification. Binary classification (Instances, Class labels): (x 1 , y 1 ), (x 2 , y 2 ), ..., (x n , y n )

Download Presentation

...visualizing classifier performance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ...visualizing classifier performance Tobias Sing Dept. of Modeling & Simulation Novartis Pharma AG Joint work with Oliver Sander (MPI for Informatics, Saarbrücken)

  2. Classification • Binary classification • (Instances, Class labels): (x1, y1), (x2, y2), ..., (xn, yn) • yi {1,-1} - valued • Classifier: provides class prediction Ŷ for an instance • Outcomes for a prediction: True class Predictedclass 2 | ROCR | Tobias Sing | July 2, 2007

  3. Some basic performance measures • P(Ŷ = Y): accuracy • P(Ŷ = 1 | Y = 1): true positive rate • P(Ŷ = 1 | Y = -1): false positive rate • P(Y = 1 | Ŷ = 1): precision True class Predictedclass 3 | ROCR | Tobias Sing | July 2, 2007

  4. Performance trade-offs • Often: Improvement in measure X  measure Y becomes worse • Idea: Visualize trade-off in a two-dimensional plot • Examples: • True pos. rate vs.false pos. rate • Precision vs. recall • Lift charts • … 4 | ROCR | Tobias Sing | July 2, 2007

  5. Scoring classifiers • Output: continuous(instead of actualclass prediction) • Discretized by choosinga cut-off • f(x) ≥ c  class „1“ • f(x) < c  class „-1“ • Trade-off visualizations:cutoff-parameterized curves 5 | ROCR | Tobias Sing | July 2, 2007

  6. ROCR • Only three commands • pred <- prediction( scores, labels )(pred: S4 object of class prediction) • perf <- performance( pred, measure.Y, measure.X)(pred: S4 object of class performance) • plot( perf ) • Input format • Single run:vectors (scores: numeric; labels: anything) • Multiple runs (cross-validation, bootstrapping, …): matrices or lists 6 | ROCR | Tobias Sing | July 2, 2007

  7. Examples (1/8): ROC curves • pred <- prediction(scores, labels) • perf <- performance(pred, "tpr", "fpr") • plot(perf, colorize=T) 7 | ROCR | Tobias Sing | July 2, 2007

  8. Examples (2/8): Precision/recall curves • pred <- prediction(scores, labels) • perf <- performance(pred, "prec", "rec") • plot(perf, colorize=T) 8 | ROCR | Tobias Sing | July 2, 2007

  9. Examples (3/8): Averaging across multiple runs • pred <- prediction(scores, labels) • perf <- performance(pred, "tpr", "fpr") • plot(perf, avg='threshold', spread.estimate='stddev', colorize=T) 9 | ROCR | Tobias Sing | July 2, 2007

  10. Examples (4/8): Performance vs. cutoff • perf <- performance(pred, "cal", window.size=50) • plot(perf) • perf <- performance(pred, "acc") • plot(perf, avg= "vertical", spread.estimate="boxplot", show.spread.at= seq(0.1, 0.9, by=0.1)) 10 | ROCR | Tobias Sing | July 2, 2007

  11. Examples (5/8): Cutoff labeling • pred <- prediction(scores, labels) • perf <- performance(pred,"pcmiss","lift") • plot(perf, colorize=T, print.cutoffs.at=seq(0,1,by=0.1), text.adj=c(1.2,1.2), avg="threshold", lwd=3) 11 | ROCR | Tobias Sing | July 2, 2007

  12. Examples (6/8): Cutoff labeling – multiple runs • plot(perf,print.cutoffs.at=seq(0,1,by=0.2),text.cex=0.8,text.y=lapply(as.list(seq(0,0.5,by=0.05)), function(x) { rep(x,length(perf@x.values[[1]]))}),col= as.list(terrain.colors(10)),text.col= as.list(terrain.colors(10)),points.col= as.list(terrain.colors(10))) 12 | ROCR | Tobias Sing | July 2, 2007

  13. Examples (7/8): More complex trade-offs... • perf <- performance(pred,"acc","lift") • plot(perf, colorize=T) • plot(perf, colorize=T, print.cutoffs.at=seq(0,1,by=0.1), add=T, text.adj=c(1.2, 1.2), avg="threshold", lwd=3) 13 | ROCR | Tobias Sing | July 2, 2007

  14. Examples (8/8): Some other examples • perf<-performance( pred, 'ecost') • plot(perf) • perf<-performance( pred, 'rch') • plot(perf) 14 | ROCR | Tobias Sing | July 2, 2007

  15. Extending ROCR: An example • Extend environments • assign("auc", "Area under the ROC curve",envir = long.unit.names) • assign("auc", ".performance.auc",envir = function.names) • assign("auc", "fpr.stop", envir=optional.arguments) • assign("auc:fpr.stop", 1, envir=default.values) • Implement performance measure (predefined signature) • .performance.auc <- function (predictions, labels, cutoffs, fp, tp, fn,tn, n.pos, n.neg, n.pos.pred, n.neg.pred, fpr.stop){} 15 | ROCR | Tobias Sing | July 2, 2007

  16. Thank you! • http://rocr.bioinf.mpi-sb.mpg.de • Sing et al. (2005) Bioinformatics 16 | ROCR | Tobias Sing | July 2, 2007

More Related