1 / 14

Dynamic 3D Surface Rendering Lecture on Revolution & Rotation

Learn to render 3D surfaces using rotation, revolution, and transformation techniques. This lecture includes code snippets and explanations for creating visually engaging surfaces. Explore concepts such as normalization, cross products, and geometric transformations in 3D space.

deon
Download Presentation

Dynamic 3D Surface Rendering Lecture on Revolution & Rotation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 3: 3D Rendering Surface of Revolution

  2.   float r[12] = {0.0,0.3,0.3,0.25,0.25,0.35,0.35,0.3,0.15,0.15,0.05,0.0};   float y[12] = {0.0,0.0,0.05,0.1,0.3,0.35,0.45,0.5,0.5,0.4,0.3,0.3};

  3.  void normalize(float v[3])  {      float d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);      if (d != 0.0)     {         v[0]/=d;        v[1]/=d;         v[2]/=d;      }  }  void normCrossProd(float v1[3], float v2[3], float out[3])  {     out[0] = v1[1]*v2[2] - v1[2]*v2[1];     out[1] = v1[2]*v2[0] - v1[0]*v2[2];     out[2] = v1[0]*v2[1] - v1[1]*v2[0];     normalize(out);  } 

  4. vang p2 ang p1 p0 glBegin(GL_LINES);    for(vang=0;vang<=180;vang+=delang)   {      y0=r0*cos((double)(vang)*2.0*pi/360.0);      y1=r0*cos((double)(vang+delang)*2.0*pi/360.0);      x0=r0*sin((double)vang*2.0*pi/360.0);      z0=0.0;      for (ang=0;ang<=360;ang+=delang)      {         x1=r0*cos((double)ang*2.0*pi/360.0)*sin((double)vang*2.0*pi/360.0);         x2=r0*cos((double)ang*2.0*pi/360.0)*sin((double)(vang+delang)*2.0*pi/360.0);         z1=r0*sin((double)ang*2.0*pi/360.0)*sin((double)vang*2.0*pi/360.0);         z2=r0*sin((double)ang*2.0*pi/360.0)*sin((double)(vang+delang)*2.0*pi/360.0);         glColor3f((r0-x0)/r0,(r0-y0)/r0,(r0-z0)/r0);                  glVertex3f(x0,y0,z0);         glVertex3f(x1,y0,z1);         glVertex3f(x1,y0,z1);         glVertex3f(x2,y1,z2);        x0=x1;         z0=z1;      }   } glEnd(); 

  5. #include "stdafx.h" #include <GL/glut.h> #include <math.h> GLfloat yang = 0.0; GLfloat xang = 0.0; double const pi = 3.1415926; void display() { int vang,ang; int delang = 10; float r0 = 0.4; float x0,y0,z0,x1,y1,z1,x2,z2; glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glLoadIdentity(); glRotatef(yang,1.0,1.0,0.0); glTranslatef(-0.4,0.25,0.0); glRotatef(xang,0.0,0.0,1.0);

  6. glBegin(GL_LINES); for(vang=0;vang<=180;vang+=delang) { y0=r0*cos((double)(vang)*2.0*pi/360.0); y1=r0*cos((double)(vang+delang)*2.0*pi/360.0); x0=r0*sin((double)vang*2.0*pi/360.0); z0=0.0; for (ang=0;ang<=360;ang+=delang) { x1=r0*cos((double)ang*2.0*pi/360.0)*sin((double)vang*2.0*pi/360.0); x2=r0*cos((double)ang*2.0*pi/360.0)*sin((double)(vang+delang)*2.0*pi/360.0); z1=r0*sin((double)ang*2.0*pi/360.0)*sin((double)vang*2.0*pi/360.0); z2=r0*sin((double)ang*2.0*pi/360.0)*sin((double)(vang+delang)*2.0*pi/360.0); glVertex3f(x0,y0,z0); glVertex3f(x1,y0,z1); glVertex3f(x1,y0,z1); glVertex3f(x2,y1,z2); x0=x1; z0=z1; } } glEnd(); yang = yang + 0.05; if (yang>360.0) yang = 0.0; xang = xang - 0.015; if (xang<0.0) xang = 360.0; glutSwapBuffers(); glFlush();

  7. void init() { glClearColor(0.2,0.2,0.5,1.0); glColor3f(0.8,0.8,0.0); glClearDepth(1.0); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_PROJECTION); } void main(int argc, char** argv) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); glutInitWindowSize(700,700); glutInitWindowPosition(0,0); glutCreateWindow("3D Rotation"); glutDisplayFunc(display); glutIdleFunc(display); init(); glutMainLoop(); }

More Related