1 / 36

2000. 7. 22. 조 경 숙 이화여자대학교 과학기술대학원 환경학과

악취 및 VOC 제거용 Biofilter. 2000. 7. 22. 조 경 숙 이화여자대학교 과학기술대학원 환경학과. 목 차. 1. 대기오염물질 규제 현황 2. 처리방법 3. Biofiltration 의 특성과 경제성 평가 4. Biofilter 의 종류 5. Biofilter 의 설계 6. Biofilter 의 적용 사례 참고문헌 : Devinny J.S. et al . (1999) “Biofiltration for air pollution control”, Lewis Publishers.

derex
Download Presentation

2000. 7. 22. 조 경 숙 이화여자대학교 과학기술대학원 환경학과

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 악취 및 VOC 제거용 Biofilter 2000. 7. 22. 조 경 숙 이화여자대학교 과학기술대학원 환경학과

  2. 목 차 1. 대기오염물질 규제 현황 2. 처리방법 3. Biofiltration의 특성과 경제성 평가 4. Biofilter의 종류 5. Biofilter의 설계 6. Biofilter의 적용 사례 참고문헌: Devinny J.S. et al. (1999) “Biofiltration for air pollution control”, Lewis Publishers.

  3. 악취 배출 현황 및 규제 • 악취 란? • 황화수소, 메르캅탄류, 아민류 및 기타 자극성 있는 기체상의 물질로 사람의 후각을 자극하여 불쾌감 및 혐오감을 주는 냄새 • 악취 발생원 • 하·폐수처리장 , 분뇨처리장, 매립지, 퇴비화 시설 등 환경기초시설 • 주물공장, 도금공장, 피혁공장 , 제지공장, 석유화학공장, 페인트 제조공장, 비료공장 , 식품가공공장 등 각종 산업시설 • 농수산유통소, 축산단지 등

  4. 우리나라 악취 규제 기준

  5. 악취처리 방법 • 물리적 처리법 - 활성탄 흡착법, 공기 희석법 • 화학적 처리법 - 연소법, 염소법, Scrubber법 • 생물학적 처리법 • 기체-액체계 - Bioscrubber, 폭기조법 • 기체-고체계 - 토양 탈취법, Biofilter

  6. Comparison of Waste Gas Control Technologies Control technology Carbon adsorption Advantage Short retention time/ small unit Effective removal of compounds Suitable for low/ moderate loads Consistent, reliable operation Disadvantage High operating costs Moderate capital costs Carbon life reduced by moist gas stream Creates secondary waste streams

  7. Comparison of Waste Gas Control Technologies Control technology Incineration Advantage System is simple Effective removal of compounds Suitable for very high loads Performance is uniform and reliable Small area required Disadvantage High operating and capital costs High flow/low concentrations not cost effective Creates a secondary waste stream Scrutinized by public

  8. Comparison of Waste Gas Control Technologies Control technology Wet Scrubbing Advantage Low capital costs Effective removal of odor No medium disposal required Can operate with a moist gas stream Can handle high flow rate Ability to handle variable loads Disadvantage High operating costs Need for complex chemical feed systems Does not remove all VOCs Water softening often required Nozzle maintenance often required

  9. Comparison of Waste Gas Control Technologies Control technology Biotrickling filters Advantage Medium operating and capital costs Effective removal of compounds Treats acid-producing Contaminants Low pressure drop Disadvantage Clogging by biomass More complex to construct and operate Further waste streams produced

  10. Comparison of Waste Gas Control Technologies Control technology Biofiltration Advantage Low operating and capital costs Effective removal of compounds Low pressure dorp No further waste streams produced Disadvantage Large footprint requirement Medium deterioration will occur Less suitable for high concentration Moisture and pH difficult to control Particulate matter may clog medium

  11. 화학반응과 생물반응 비교 화학반응 생물반응 반응조건 고온, 고압 상온, 상압 에너지소비 크다 작다 용매 유기용매 물 반응계 단순 복잡 생산물 비생물적(환경 잔류성) 생물적(생분해성) 촉매 유독성인 것이 많음 거의 무독

  12. 미생물의 특성(미생물을 활용할 경우 유리한 점) • 생장속도가 빠름 • 단순한 구조(단세포 구조) • 단순한 유전자 구조 • 돌연변이율이 높음 • 유전자 조작 및 조절이 단순 • 다양한 서식지 • 토양, 물, 해양, 대기, 극한 환경 • 다양한 활성 • 다양한 화학물질 및 독성물질 분해 가능 • 중금속의 축적 혹은 산화, 환원에 관여 • 유용물질 생산 • 온화한 반응 조건 • 0-95oC (주로 30-40oC), pH=2-10(주로 7)

  13. Applicability of various air pollution control technologies based on air flow rates and concentrations to be treated

  14. Investment costs vs. air flow rate for various air pollution control technologies

  15. Operating costs vs. air flow rate for various air pollution control technologies

  16. 생물학적 탈취 방법의 원리 탈취 미생물 악취 가스 (H2S, NH3, MT, DMS, DMDS) 용해 산화 산물 (무취) 기체상 액체상

  17. Biotransformation and transport processes in biofilters

  18. 미생물에 의한 황화계 악취의 분해 기작 2CH3-S-CH3(DMS) CH3-S-S-CH3(DMDS) 2NADH + 2H+ 2O2 NADH - stimulated DMDS reductase NADH - stimulated DMS oxidase 2NAD+ 2H2O 2CH3SH(MN) 2H2O 2HCHO 2O2 MT oxidase, producing H2S and H2O2 2NAD+ 2H2O 2H2O2 NAD - specific formaldehyde dehydrogenase Catalase 2NADH + H+ 2H2S 2H2O + O2 2HCOOH 2NAD+ Sulfide - oxidizing system NAD - specific formate dehydrogenase 2NADH + H+ 2CO2 2H2SO4

  19. 미생물에 의한 NH3산화 기작 • 암모니아 산화 과정 • 아질산 산화과정 1) NH3 + 1/2 O2→ NH2OH 2) NH2OH + H2O → HNO2 + 4H+ + 4e- 3) 4H+ + 4e- + O2→ 2H2O 1) NO2- + H2O → NO3- + 2H+ + 2e- 2) 2H+ + 2e-+ 1/2 O2→ H2O

  20. Biofilter의 종류 1. Common Biofilters • Pollutants: BTEX, NH3, Trirmethylamine, Ethanol, Organic acids, etc. • Emission sources: Various industrial systems • Microorganisms: Pseudomonas, Bacillus, etc. • Abundant water and oxygen • Aerobic metabolism • Temperature: 15-40 ºC, pH: 6-8 • Metabolic product: CO2 , H2O, Biomass

  21. Biofilter의 종류 2. Low pH Biofilters for Sulfide Oxidation • Pollutants: H2S • Emission sources: various industrial systems, wastewater collection and treatment facilities • Microorganisms: Thiobacillus thiooxidans, Thiobacillus spp. • PH: 1-3, Temp.: 15-40 ºC • Abundant water and oxygen • Aerobic metabolism • Metabolic product: H2SO4

  22. Biofilter의 종류 3. Low-Water-Content Biofilters • Pollutants: VOCs, Odourous materials • Microorganisms: Filamentous fungi (Xeromyces bisporous) • Degradation of pollutants at low water activities below 0.61 • Aerobic metabolism • Applications: Bench biofilters for treatment of Tounlene, Ethylbenzene, o-Xylene

  23. Biofilter의 종류 4. High-Temperature Biofilters • Thermophilic Microorganisms: 45-60 ºC • Advantages: • Higher degradation rate • More economical treatment processes • Disadvantages: • Fast decomposition of degradable support media • Reduction of the solubility of pollutants • Applications: • Deshusses et al. (1997): 100 g- ethyl acetate/m3•h, 45-50 ºC • van Groenestijn et al. (1995): Hot gases containing ethanol, 50-70 ºC

  24. Biofilter의 종류 5. NOx Biofilters • Microorganism: • genus Nitrobacter: Nitric oxide  Nitrite  Nitrate • Denitrifying bacteria: NO  N2 • Aerobic / Anaerobic Processes • Applications: • Apel et al. (1995): Anaerobic removal of nitrogen oxides from combustion gases using denitrifying bacteria (NO  N2 in thick biofilm ) • Biosaint (1999): Removal of ammonia using Nitrobacter:95-98% removal at 50-1000 ppmv

  25. Biofilter의 종류 6. Anaerobic Biofilters (혐기바이오필터) • Deep portions of the biofilm: “anaerobic zone”

  26. Biofilter의 종류 7. Biofilters using cometabolism • Growth substrate (CH4, toluene, phenol, etc.) M.O. 난분해성 물질(TCE) CO2, H2O Biomass • Microorganism: no energy or other benefits from degrading cosubstrate fortuitously degrade unrelated compounds (similar shape to the active site of the enzyme)

  27. Schematic diagrams of above-ground closed biofilter

  28. Schematic diagrams of below-ground open biofilter

  29. Schematic diagram of biological trickling filter

  30. Schematic diagram of biowasher or bioscrubber

  31. Temperature effects on species of microorganisms and biofilter activity • 동절기와 같이 낮은 온도에서는 미생물의 활성이 저하되기 때문에 별도의 heating system이 필요. • 가열방법: 스팀의 직접주입, 공기의 가열, 가열된 순환수를 증습탑에 흘려주는 방법 • Hot gas (40℃이상): 공기로 희석하거나 pre-humidification 통한 냉각 ex) 50,000m3/hr 폐가스 40oC를 25oC로 냉각  약 1400 L/h의 물이 소요.

  32. 영양분 요구 (Comparison of biofilter operation regimes) • 탄소원 에너지원: 오염물질 • 외부공급 영양분: N, P, S, trace elements

  33. PH and Oxygen effects on species of microorganisms and biofilter activity • Effect of pH • Filter material의 pH의 변화는 미생물의 활동도에 큰 영향을 미침. • Compost bed의 최적 pH 7∼8. • 생물학적 처리에서 pH영역은 대략 6.5∼8정도. Effect of Oxygen • 호기성 종속 영양세균 filter bed에 최소한 5∼15%산소가 요구됨. • 일반적으로 산소공급은 들어오는 폐가스에 산소가 풍부하며, 활동하는 biofilm이 상대적으로 얇기 때문에 문제 없슴.

  34. 담체의 선정 기준 (1) 보수성이 양호할 것 (2) 공극률이 높고 비표면적이 클 것 (3) 압밀이 적을 것 (4) 넓은 범위의 함수율에서 악취 가스 주입시 압력 손실이 적고 변화가 적을 것 (5) 장기간 사용에 의해 형태나 구조가 변하지 않는 내구성을 지닐 것 (6) 가격이 저렴할 것 (7) 가벼울 것 (8) VOCs 및 악취가스에 대해 어느 정도 흡착성을 가질 것

  35. Typical Biofilter Operating Conditionsfor Waste Air Treatment Parameter Biofilter layer height Biofilter area Waste air flow Biofilter surface loading Biofilter volumetric loading Bed void volume Mean effective gas residence time pressure drop per meter of bed height Inlet pollutant and/or odor concentration Operating temperature Inlet air relative humidity Water content of the support material pH of the support material Typical removal efficiencies Typical value 1-1.5 m 1-3000m2 50-300,000m3h-1 5-500m3m-2 h-1 5-500m3m-2 h-1 50% 15-60 s 0.2-1.0 cm water gauge (max. 10cm) 0.01-5gm-3, 500-50,000OUm-3 15-30 C >98% 60% by mass pH 6-8 60-100%

  36. Summary of Important properties of Common Biofilter Materials Soil H L-M L H M >30 Very L E, low-activity biofilters Indigenous microorganisms population density Surface area Air permeability Assimilable nutrient content Pollutant sorption capacity Lifetime (year) Cost General applicability Compost H M M H M 2-4 L E, cost effective Peat M-L H H M-H M 2-4 L M, water control problems Activated carbon, perlite, and other inert materials None H M-H None L-H >5 M-H Needs nutrient, may be expensive Synthetic material None H Very H None None to H very H >15 Very H Prototype only or biotrickling filters

More Related