510 likes | 639 Views
The energy issue and the possible contribution of various nuclear energy production scenarios part II. H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat ». IPCC projections. 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity.
E N D
The energy issue and the possible contribution of various nuclear energy production scenariospart II H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat »
IPCC projections 2030 tCO2<50$/ton Renewables: 35% electricity Nuclear: 18% electricity
IEA’s successive Prospects fo Nuclear (World Energy Outlook) 2020 2030 Mtoe TWh % Mtoe TWh % WEO 1998 604 2317 8 WEO 2000 617 2369 9 WEO 2002 719 2758 11 703 2697 9 WEO 2004 776 2975 12 764 2929 9 WEO 2006 861 3304 10 Alt. 2006 1070 4106 14
Prospect for nuclear production 2000-2030 TWh (AIEA July 2006) 1400 1200 1000 2000 2010 b 800 2010 H 2020 b 600 2020 H 2030 b 2030 H 400 200 0 Am L Eur E MO+As S Ext. O Am N W Eur Afr Pacif
Nuclear Intensive Scenarios • Scenarios by difference: • P.A.Bauquis • D.Heuer and E.Merle • Objective oriented Scenarios • H.Nifenecker et al.
No miracle from renewables • Hydro: • Limitation of ressource (Europe-USA) • Environment and localization (Am.Sud, Asie, Afrique, Russie) • Large Investments • Reliable, available • Might provide 20% of world electricity. France: 70TWh/450 • Wind • « fatal » Energy • Limit: 10-15% of electricity production
No miracle with renewables • Solar • PV: Ideal for isolated sites (Africa, SE Asia). Mostly artificial in Developed Countries and very expansive • Thermal: interesting for heating and warm water • Thermodynamic: Fiability? Hot and dry climates Hot and dry climate. • Biomass • Bio-fuels (10 Mtep/50) • Wood energy. • Competition with food, energy and environmental balance
Nuclear production In Bauquis Scenario Nuclear production 0.6 Gtep 4 Gtep i.e. x 6.5
Elsa Merle and Daniel Heuer Hypothesis 2050 • Stabilization of fossile contribution • World energy consumption x 2 • Renewable = nuclear • Multiplication by factor 8 • Then increase by 1.2%/year up to 2100 Nuclear :
2000 IIASA-WEC Scenarios • A: strong growth • A1: Oil • A2: Coal • A3:Gaz • B: Middle of the road • C: Low energy intensity. High electricity • C1: Ren.+Gaz • C2: Ren.+Nuclear
World GDP B2: 110 000
Exhaustion of fossile reserves Exhaustion of fossile reserves (Gtoe)
2030-2050 2030 • Minimize use of fossils forElectricity • « Reasonable » Development of Nuclear • OECD: 85% • Transition:50% • China, India, Latin America:30% 3000 GWe Nuclear 2050 • Minimize use of coal and gas • 30% coal China, India; 30% gas Russia; 100% Africa • 7500 GWe Nucléaire
Scenario no coal no gaz in 2050 B2=18000, Nuclear=1450
U-Pu vs Th-U U-Pu versus Th-U cycles • U-Pu • Fast Spectra • Pu fuel • 1.2 GWe reactors • Solid fuels • 1 year cooling • 25 years doubling time • Th-U • Thermal Spectra • Pu, then 233U fuel • 1 GWe reactors • Molten Salts fuel • 10 days fuel cycling • 25 years doubling time
Stabilisation T • Stabilization of CO2 concentration to 450 ppm • Stabilization of temperature
3 components • 233U production: • 450 PWR and 300 FNR • Les RNR ferment le cycle U/Pu • natU consumption: • 7 million tons by 2100 • 10 times less fissile matter in fuel cycle • Minor actinides production minimized
R and D needsstandard reactors • PWR reactors • Selective reprocessing: extraction of Cs, Sr and M.A. • Th-Pu MOx fuel in order to produce U233 • Candu type reactors • Use of Th-Pu and, then Th-U3 fuel • Reprocssing of Th-U3 fuel • Optimization of fuel regeneration
R and D needsfast neutron reactors • Sodium cooled • Void coefficient • Core Recompaction • Th blanket • Reprocessing of Th blanket • Lead cooled reactors • Corrosion problems • Pb-Bi alloys • Molten salt cooled reactors • Chemical composition • Corrosion • Gas cooled reactors • Reprocessing of refractory fuels
R and D needsmolten salt reactors • Neutron spectrum optimization • Corrosion • Fuel reprocessing
Proliferation • Political or technical question?