160 likes | 168 Views
Explore different approaches for predicting data points between known points using linear and quadratic interpolation methods, as well as the Triangular Irregular Network (TIN) technique. Understand how moving a point affects polynomial interpolation.
E N D
To my data, right or wrong.
Linear Interpolation 650 600 Known Points 550 Predicted Point Actual curve Numbers 500 450 400 350 0.9 1.1 1.3 1.5 1.7 1.9 2.1 Time
Quadratic Interpolation Known Points Actual curve Numbers Predicted Point Time
What happens if we move a point with polynomial Interpolation?
Triangular Irregular Network (TIN) Latitude Longitude
Triangular Irregular Network (TIN) Latitude Longitude
Triangular Irregular Network (TIN) Latitude Longitude
y = 1000 exp(-zt) y ' = -z exp(-zt) y ' (1) = -0.2 * exp(-0.2) = -0.16 y ' (1) = -1.0 * exp(-1.0) = -0.37