170 likes | 516 Views
Cellular Transport. Diffusion Osmosis Facilitated Diffusion Active Transport Filtration. Passive Transport. NO ENERGY REQUIRED to move substances across membrane -- water, lipids, and other lipid soluble substances. Types: Diffusion Osmosis Facilitated Diffusion Filtration. Diffusion.
E N D
Cellular Transport Diffusion Osmosis Facilitated Diffusion Active Transport Filtration
Passive Transport • NO ENERGY REQUIRED to move substances across membrane -- water, lipids, and other lipid soluble substances. • Types: • Diffusion • Osmosis • Facilitated Diffusion • Filtration
Diffusion • Occurs because of Brownian Motion, i.e., the random movement of particles. • Net movement of particles from an area of greater concentration to an area of lesser concentration. • Concentration gradient, i.e., the difference in concentration across space.
Diffusion Molecules move down the concentration gradient until there are equal numbers of molecules on both sides ~ dynamic equilibrium.
Dynamic Equilibrium Molecules continue to move randomly because of Brownian motion, but there is no net movement.
Osmosis • Diffusion of water from an area of greater concentration of water to an area of lesser concentration of water -- across a semipermeable membrane. • Isotonic Solutions • Hypertonic Solutions • Hypotonic Solutions
Isotonic Solution • Concentration of solutes in the solution is the same as inside the cell. • Cell is in dynamic equilibrium, i.e., no net gain or loss of water. H20 H20
Hypotonic Solution • Concentration of solutes is lower in solution than inside cell. • Net movement of water will be INTO the cell. H20 H20 H20
Hypotonic Solution Turgor Pressure -- This is why grocery stores spray vegetables -- crispness! Plant Cell Cytolysis -- Animal cell bursts. Animal Cell
Hypertonic Solution • Concentration of solutes is greater in solution than inside cell. • Net movement of water will be OUT OF the cell. H20 H20 H20
Hypertonic Solutions • Meat placed in salt water loses moisture and is dry and tough when cooked. • Plant cells placed in salt water shrink, losing turgor pressure ~ plasmolysis. • Blood cells in hypertonic solutions will lose liquid ~ plasmolysis.
Facilitated Diffusion • Movement across the membrane with the help of transport proteins . • Types: • Carrier protein - its shape fits certain molecules. • Channel protein- molecules diffuse through channel.
Active Transport • Transport of materials against (low to high) a concentration gradient • REQUIRES ENERGY! • Large Molecules: • Endocytosis/Exocytosis • Molecule engulfed by portion of membrane. • Portion breaks off as vacuole inside cell. • Liquid = Pinocytosis • Solids = Phagocytosis
Active Transport • Sodium-Potassium Pump • transports sodium ions out of cell, potassium ions into cell. High Potassium K+ High Sodium Low Potassium Na+ Low Sodium
Review • Types of Cellular Transport • Diffusion: Movement of solute (high to low) • Osmosis: Movement of water (high to low) • Hypotonic, Isotonic, and Hypertonic • Facilitated Diffusion: Carrier and channel proteins; Does not require energy • Filtration • Active Transport -- Requires energy • Endocytosis, Pinocytosis, Phagocytosis, Exocytosis, Some Carrier Molecules (Sodium-Potassium Pump)