210 likes | 387 Views
LaTeX. 2010/07/16 王森弘. 操作環境. LaTeX (F10). save (F2). PS2PDF (Alt+F11). dvi2ps (F11). 檔案標籤. 常用快速鍵. 存檔 (F2) 尋找 (F5) 取代 (F6) 復原 (Ctrl+z) 剪下 (Ctrl+x) 、複製 (Ctrl+c) 、貼上 (Ctrl+v) 編輯 LaTeX 的順序: F10 → F10 →F11→ alt+F11. 英文輸入原則. 空一行即開始新的一段 輸入一個空白跟多個連續的空白,編輯後都只會有一個空白 要輸入多個空白用 ~
E N D
LaTeX 2010/07/16 王森弘
操作環境 LaTeX (F10) save (F2) PS2PDF (Alt+F11) dvi2ps (F11) 檔案標籤
常用快速鍵 • 存檔 (F2) • 尋找 (F5) • 取代 (F6) • 復原 (Ctrl+z) • 剪下(Ctrl+x)、複製 (Ctrl+c)、貼上(Ctrl+v) • 編輯LaTeX的順序: • F10 → F10 →F11→ alt+F11
英文輸入原則 • 空一行即開始新的一段 • 輸入一個空白跟多個連續的空白,編輯後都只會有一個空白 • 要輸入多個空白用~ • 新的一段開始會自動保留與前段間距,如不保留在前一段的最末處加\par • 新的一段開始會自動內縮,如不內縮在前頭加上\noindent • 粗體 \textbf{粗體}斜體\textit{斜體} 正體 \txtrm{正體}
文稿結構 \documentclass[12pt,a4paper]{article} \begin{document} \newpage \setcounter{page}{1} \pagenumbering{roman} \tableofcontents \newpage \listoffigures \newpage \listoftables \fontsize{12}{24pt}\selectfont \newpage \setcounter{page}{1} \pagenumbering{arabic} \section{Introduction} \section{System Model} \subsection{OFDM systems} \subsubsection{Transmitter} \end{document}
常用指令 • 開始新的一頁 \newpage • 本頁不顯示頁碼 \thispagestyle{empty} • 設定頁碼計數器值 \setcounter{page}{1} • 設定字體大小與行高 \fontsize{12}{24pt}\selectfont
方程式 • 文章中要輸入方程式或變數用寫在 $$裡面 • vector $\mathbf{g}$→ vector g • $X_k[n]$ → Xk[n] • $X^{2m}$ → X2m • 輸入單行方程式與文字一起排版 \begin{equation} X=Y+Z \end{equation}
方程式 • \usepackage{amsmath} • 輸入多行方程式與文字一起排版 \begin{align} X&=Y+Z,\\ a&=b+c. \end{align} • 不給編號 \notag • 自訂編號 \tag{5}
方程式 • \usepackage{array} • 矩陣 \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] • x[n]=\left\{\begin{array}{cc} \frac{1}{2}, & n=0\\0,&\textrm{otherwise}\end{array}\right.
圖片 \begin{figure}[t] \centering \includegraphics[width = 6.5in]{OFDM_PAPR_JNL_fig02.eps} \caption{Architecture of Proposed Scheme III.}\label{PS_III} \end{figure}
圖片 • 在LaTeX中,圖片要使用eps檔 • 如何獲得eps檔: • MATLAB:直接save as,檔案類型選eps • VISIO: • 先到頁面設定→紙張大小→選大小符合繪圖內容 • 另存新檔為PDF檔,再使用Acrobat Professional另存eps檔。
表格 \begin{table}[t] \caption{Values of $u_{i2}$, $u_{i3}$, $u_{i4}$, $i=1,2,3,4$.}\label{coefficient_u} \begin{center} \begin{tabular}{c|c|c|c} \hline \hline $i$ & $u_{i2}$ & $u_{i3}$ & $u_{i4}$\\ \hline ~~~~~1~~~~~ & ~~~~~1~~~~~ & ~~~~~1~~~~~ & ~~~~~1~~~~~\\ \hline ~~~~~2~~~~~ & ~~~~~$j$~~~~~ & ~~~~$-1$~~~~~ & ~~~~$-j$~~~~~\\ \hline ~~~~~3~~~~~ & ~~~~$-1$~~~~~ & ~~~~~1~~~~~ & ~~~~$-1$~~~~~\\ \hline ~~~~~4~~~~~ & ~~~~$-j$~~~~~ & ~~~~$-1$~~~~~ & ~~~~~$j$~~~~~\\ \hline \hline \end{tabular}% \end{center} \end{table}
表格 \begin{table}[t] \caption{Computational complexity of various schemes for the OFDM system}\label{CC_analysis_OFDM} \begin{center} \begin{tabular}{c|c|c} \hline \hline & $\begin{array}{c} \textrm{Number of Complex}~\\ \textrm{Multiplications} \end{array}$ & $\begin{array}{c} \textrm{Number of Complex}~\\ \textrm{Additions}\end{array}$ \\ \hline $\begin{array}{c} \textrm{Traditional}~\\ \textrm{SLM Scheme} \end{array}$ & $(MLN/2) \cdot \log_2(LN)$ & $MLN \cdot \log_2(LN)$ \\ \hline $\begin{array}{c} \textrm{W\&O}~\textrm{Scheme} \end{array}$ & $(LN/2) \cdot \log_2(LN)$ & $\begin{array}{c}LN \cdot \log_2(LN)\\+3(M-1)LN\end{array}$ \\ \hline $\begin{array}{c} \textrm{Proposed}~\\ \textrm{Scheme I}\end{array}$ & $\begin{array}{c}(LN/2)\cdot \log_2(LN)\end{array}$ & $\begin{array}{c}LN \cdot \log_2(LN)\\+(M+7)LN\end{array}$\\ \hline $\begin{array}{c} \textrm{Proposed}~\\ \textrm{Scheme II}\end{array}$ & $\begin{array}{c}LN\cdot \log_2(LN)\end{array}$ & $\begin{array}{c}2LN \cdot \log_2(LN)\\+(M+14)LN\end{array}$\\ \hline $\begin{array}{c} \textrm{Proposed}~\\ \textrm{Scheme III}\end{array}$ & $\begin{array}{c}(LN/2)\cdot \log_2(LN)\end{array}$ & $\begin{array}{c}LN \cdot \log_2(LN)\\+3MLN\end{array}$\\ \hline \hline \end{tabular} \end{center} \end{table}
表格 \begin{table}[t] \caption{Computational complexity of various schemes for the OFDMA system} \label{CC_analysis} \begin{center} \extrarowheight=1pt \doublerulesep=1pt \tabcolsep=-0.5pt \begin{tabular}{c|c|c|c} \hline \hline & \multicolumn{2}{c}{$\begin{array}{c} \textrm{Number of Complex}\\ \textrm{Multiplications} \end{array}$}\vline & $\begin{array}{c} \textrm{Number of Complex}\\ \textrm{Additions}\end{array}$ \\ \hline $\begin{array}{c} \textrm{Traditional} \\ \textrm{SLM Scheme} \end{array}$ & \multicolumn{2}{c}{$(MLN/2) \cdot \log_2(LN)$}\vline & $MLN \cdot \log_2(LN)$ \\ \hline \multirow{6}*{$\begin{array}{c} \textrm{Proposed}\\\textrm{Scheme II}\\ \textrm{with $Q$ IFFTs}\\ \textrm{for Interleaved}\\ \textrm{OFDMA}\end{array}$} & $~\Psi=2~$ & $(QLN/2)\!\cdot\! \log_2(LN)$ & \multirow{6}*{$\begin{array}{c}QLN \cdot \log_2(LN) \\+QLN(1+1/\Psi)\\ +(M\!-\!Q)\!\cdot\! (LN/\Psi)\end{array}$}\\ \cline{2-3}&$~\Psi=4~$ & $\begin{array}{c} (QLN/2)\!\cdot\! \log_2(LN)\\ +QLN\end{array}$ & \\ \cline{2-3}&$~\Psi\geq 8~$ & $\begin{array}{c} (QLN/2)\!\cdot\! \log_2(LN) \\ +QLN\\+(\Psi-1)\cdot LN/\Psi\end{array}$& \\ \hline $\begin{array}{c} \textrm{Proposed}\\\textrm{Scheme II}\\ \textrm{with $Q$ IFFTs}\\ \textrm{for Sub-band}\\ \textrm{OFDMA}\end{array}$ & \multicolumn{2}{c}{$\begin{array}{c}(QLN/2)\cdot \log_2(LN)\end{array}$} \vline& $\begin{array}{c}QLN \cdot \log_2(LN) \\+2QLN\\ +(M-Q)\cdot LN\end{array}$\\ \hline \hline \end{tabular}% \end{center} \end{table}
Reference \begin{thebibliography}{99} \bibitem{clyo} % SLM C.-L. Wang and Y. Ouyang, ``Low-complexity selected mapping schemesfor peak-to-average power ratio reduction in OFDM systems,“\emph{IEEE Trans. Signal Process.}, vol. 53, no. 12, pp. 4652-4660,Dec. 2005. \end{thebibliography}
圖表參照 • the values shown in TABLE \ref{coefficient_u} • Figure \ref{PS_III} presents the architecture of • traditional SLM scheme, Wang and Ouyang~\cite{clyo}
編號 • \numberwithin{equation}{section} • \numberwithin{figure}{section} • \numberwithin{table}{section}
定理 • \newtheorem{theo}{Theorem}[section] • \newtheorem{lemm}{Lemma}[section] • \begin{theo} \end{theo} • \begin{proof} \end{proof}