320 likes | 435 Views
Explore the magnetoplasmonic nanostructures for environmental sensing applications. Study magneto-optical responses of materials, circular dichroism, and particle plasmons. Investigate core-shell nanoparticles for enhanced properties. Discover Faraday rotation, hybrid plasmons, and scattering in gyrotropic materials.
E N D
Department of Solid State Physics National and Kapodistrian University of Athens Magnetoplasmonic nanostructures Nikolaos Stefanou
Magneto-optical response of materials z losses >0, dielectric <0, metallic
z RCP LCP eigenvectors eigenvalues LCP RCP longitudinal
Particle Plasmons: localized states of EM field, e.g. in a noble metal nanoparticle Ag 40 nm
Circular Dichroism: Differential absorption of LCP and RCP light TEM 40 nm F. Pineider et al., Nano Lett. 13, 4785 (2013) Applications for environmental sensors. Required strong fields > 10T
Αg (40nm) Co (40nm) Co-Ag (28nm-40nm) Ag: strong plasmon resonances, weak magneto-optic effects Co: gyrotropic responce, strong magneto-optic effects, no plasmon resonances
Hydrid nanoparticles consisting magnetic core (Co) and plasmonicshell (Ag) L. Wang et al., Nano Lett. 11, 1237 (2011)
Scattering from gyrotropic sphere with isotropic shell Host: Shell: Core: Boundary conditions scattering T matrix
Applications:nanoparticlesCo-Ag : absorption cross sectionand electric field amplitude distribution (16-40) nm (28-40) nm
Circular dichroism of core-shell Co-Agspheres (16-40) nm (28-40) nm
Diagonal (upper diagram) and nondiagonal (lower diagram) elements of the relative perimittivity tensor for magnetized cobalt Im Re g Re Im
TEM image of Bi:YIG nanospheres T. Kim et al., J.Nanopart. Res. 9,737 (2007) Garnets, e.g.,YttriumIronGarnet • Ferrimagnetic material • Transparent for,low losses • YIG spheres commercially available • Large Faraday rotation • Saturation magnetization • Optical and magneto-optical applications • Microwave filters • Magneto-optic devices • Solid State lasers
Plasmon Hybridization Antibonding hybrid plasmon Bonding hybrid plasmon C. S. Levin et al., ACS Nano 3, 1379 (2009)
Hybrid nanoparticles consisting of dielectric core (Bi:YIG) and plasmonic shell (Ag) (16-40) nm (28-40) nm
Circular dichroism of core-shell Bi:YIG-Agspheres (16-40) nm (28-40) nm
Diagonal (upper diagram) and nondiagonal (lower diagram)elements of the relative perimittivity tensor for magnetizedBi:YIG
Light propagation in stratified media conserved conserved conserved conserved , , , , z
conserved Bloch theorem Scattering matrices of a 2D periodic array of scatterers conserved conserved α Layer-Multiple Scattering method N. Stefanou et al., Computer Phys. Commun. 113, 49 (1998); 132,189 (2000); Phys. Rev. B 73, 035115 (2006)
Faraday rotation Homogeneous Magnetic material
Hybrid core-shell nanoparticles Dielectric magnetic core-Metallic shell Plasmon mode localized in the magnetic core material
Core-shell nanoparticles Shell Core Host medium Volume filling fraction 50%
Bandhybridization Photonic band diagram of an fcc crystal d
8 fcc (111) layers (a=34 nm) ofBi:YIG (12 nm) - Ag (15 nm) core-shell nanoparticles ExactEffective medium
one-way propagation B lack of time-reversal and space-inversion symmetries J. Sharma et al., Science 323, 112 (2009) spectral nonreciprocity optical communications computing technologies