1 / 65

A tutorial on Kernelization

A tutorial on Kernelization. Hans L. Bodlaender. On this talk. Kernelization: what, why, how? Connection with fixed parameter tractability: problems without kernels Problems without polynomial kernels Conclusions Thanks to many people for inspiration, collaboration and contribution!.

dinh
Download Presentation

A tutorial on Kernelization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A tutorial onKernelization Hans L. Bodlaender IPEC 2011 - Kernelization

  2. On this talk • Kernelization: what, why, how? • Connection with fixed parameter tractability: problems without kernels • Problems without polynomial kernels • Conclusions • Thanks to many people for inspiration, collaboration and contribution! IPEC 2011 - Kernelization

  3. What to do with hard problems? • Many combinatorial problems are hard, e.g., NP-complete • Arising in many contexts • Approaches to deal with them: • Approximations • Special cases • Exact algorithms • ILP techniques, branch and bound, sat-solvers, … IPEC 2011 - Kernelization

  4. Before running a slow exact algorithm, preprocess / simplify the data: Transform to (hopefully smaller) equivalent instance Useful approach: preprocessing Input Preprocess Equivalent smaller input I’ Solve Output for I’ Undo preprocessing Output for I’ IPEC 2011 - Kernelization

  5. On preprocessing • Relatively fast step • Attempt to obtain equivalent instance: • Answer does not change • Size may decrease • Slow algorithm (like ILP-solver) uses hopefully less time on reduced instance IPEC 2011 - Kernelization

  6. Kernelization: central question • What can we prove on the size of a reduced instance, assuming polynomial time preprocessing? IPEC 2011 - Kernelization

  7. What we cannot expect Proposition If P ¹ NP, then an NP-hard problem Q has no polynomial time preprocessing algorithm A that always reduces an input to a smaller equivalent input. Proof: If A exists, then P=NP: repeat the algorithm till we have an instance of size O(1) and solve. • So … instead we investigate reduced instance size as function of a parameter of the inputs. IPEC 2011 - Kernelization

  8. Parameterized problem • Subset of S* xN: • (“real input”, “parameter”) • Decision problem • ‘Part of the input is an integer, called the parameter • We express quality of preprocessing as function of the parameter IPEC 2011 - Kernelization

  9. Vertex cover: Input: Graph G=(V,E), integer k Question: Is there a vertex cover of size at most k in G, i.e., a set W Í V such that for all {v,w} Î E, v Î W or wÎ W? Parameter: k Classic first example: Vertex Cover IPEC 2011 - Kernelization

  10. Simplification rules Input: Graph G and integer k • Rule 1: remove vertex with no neighbors. • Rule 2: if a vertex v has k+1 or more neighbors, then • {v must be in each vertex cover of size £k} • Remove v and all incident edges; • Set k = k – 1. • Rule 3: if k < 0, then say no. IPEC 2011 - Kernelization

  11. Counting rule • Rule 4: if earlier rules do not apply, and we have more than k2 edges, then say no. • Each vertex has degree at most k so can cover at most k edges. So, if G has more than k2 edges, there is no vertex cover of size at most k. • Algorithm: execute rules while possible. • Output of algorithm: • Sometimes no (certainly not a solution). • Sometimes a equivalent instance with at most k2 edges (and hence O(k2) vertices). IPEC 2011 - Kernelization

  12. “Kernel” for Vertex Cover Theorem There is a polynomial time algorithm, that given an input (G,k) of Vertex Cover, either decides on this input or gives an equivalent instance with O(k2) vertices and edges. • Instead of deciding, we can also transform to trivial no instance (e.g., graph with one edge and k=0). • We say: • Vertex Cover has kernel with O(k2) vertices and edges. IPEC 2011 - Kernelization

  13. Kernel (definition) • A kernelization algorithm or kernel for a parameterized problem Q is an algorithm A that maps inputs for Q to inputs for Q, such that • A uses polynomial time; • For all (x,k): (x,k) Î Q if and only if A(x,k) Î Q; • There is a function f such that for all (x’, k’) = A(x,k): • k’ £ f(k); • |x’| £ f(k). Size and parameter of newinstance boundedbyfunction of old parameter IPEC 2011 - Kernelization

  14. Research questions • For parameterized problems Q: • Does Q have a kernel? • If so, how small (function f) can this kernel be? • Linear kernels? • Polynomial kernels? • Any kernels? IPEC 2011 - Kernelization

  15. Motivation for kernels • Analysis of preprocessing. • Kernels give new preprocessing steps. • First step for FPT algorithms. IPEC 2011 - Kernelization

  16. Compare • Approximation algorithm =upper bound and lower bound heuristic + a proof of its quality. • Kernel =preprocessing heuristic+ a proof of its quality. IPEC 2011 - Kernelization

  17. Overview of problem behavior • O(1) size kernels: problems in P. Ex: Eulerian • NP-completeness (variable parameter) • Polynomial kernels Shown with algorithm. Ex.: Vertex Cover • compositionality, ppt-transformations, cross-composition • Kernels, but not polynomial sized. Shown (usually) with FPT-algorithm. Ex: Long Path • W[1]-hardness • XP: No kernel, polynomial if parameter is bounded. Ex.: Independent Set • NP-completeness (fixed parameter) • Bad. Example: Graph Coloring is NP-complete for 3 colors IPEC 2011 - Kernelization

  18. How do we make kernelization algorithms • General method: • Invent SafeRules. • Safe rules change an instance to an equivalent instance. • Rules should modify instances to equivalent instances that are • Smaller or • Give more structural insight. • Have a • Counting rule or a • Counting argument. IPEC 2011 - Kernelization

  19. Designing the algorithm Repeat until we have a (small enough) kernel: • Invent safe rules. • Analyse instances: if no safe rule applies, is the instance size bounded? If not, why not? Can we find a rule that avoids such situations? IPEC 2011 - Kernelization

  20. Instance: sequence of marbles and an integer k. Each marble has a positive integer cost and a color. Question: can we remove marbles of total cost at most k such that for each color, all marbles with that color are consecutive? Parameter: k. Example: Weighted marbles 3 4 1 3 2 2 6 4 1 3 2 6 Solution of cost 5=3+2 IPEC 2011 - Kernelization

  21. Rule 1 • If we have two consecutive marbles of the same color, replace it by one with the sum of the weights. .. .. 5 7 .. .. .. .. 12 .. .. IPEC 2011 - Kernelization

  22. What we have now: • Two successive marbles have a different color. • But, we can have many color changes, even in a solution of cost 1. 3 4 1 3 2 2 6 1 IPEC 2011 - Kernelization

  23. Good colors • A color is good, if there is only one marble with this color. 3 4 1 3 2 2 6 1 IPEC 2011 - Kernelization

  24. Rule 2 • Suppose two successive marbles both have a good color. Give the second the color of the first. 3 4 1 3 2 2 6 1 3 times Rule 2 3 4 1 3 2 2 6 1 IPEC 2011 - Kernelization

  25. Rule 2 • Suppose two successive marbles both have a good color. Give the second the color of the first Rule 2 does not make the instance smaller, but it makes it simpler: fewer colors! I.e., increases our structural insight! 3 4 1 3 2 2 6 1 3 times Rule 2 3 4 1 3 2 2 6 1 IPEC 2011 - Kernelization

  26. Algorithm • While Rule 1 or Rule 2 is possible: apply the rule. • Afterwards: • No 2 successive marbles of the same color. • No 2 successive marbles with a good color. • The number of marbles is at most twice (+1) the number of marbles with a bad color. • Can we bound the number of bad colored marbles? IPEC 2011 - Kernelization

  27. Rule 3: counting rule • If there are at least 2k+1 bad colored marbles, say no. • Safeness: By deleting one marble, the number of bad colored marbles can decrease by at most 2 (assuming rule 1). • Applying rules 1, 2, 3 while possible gives an instance with O(k) marbles. • Is this a kernel for the problem? Or transform to O(1) size no-instance IPEC 2011 - Kernelization

  28. Rule 4 • If a marble has weight > k+1, give it weight k+1. • Safeness: marble is never removed. • Kernelization algorithm: • While Rules 1 – 4 are possible, apply them. • Polynomial time. Gives equivalent instance with O(k log k) bits and O(k) marbles. • Theorem: Weighted marbles problem has kernel of size O(k log k). IPEC 2011 - Kernelization

  29. Many recent results • Kernelization usually algorithms of form: • Rules.Often with nontrivial correctness proofs. • Counting argument.Often nontrivial combinatorics. • General techniques: meta-algorithms, crown reductions, protrusions, … • Sometimes, no (small) kernel (seems to) exist: can we show this? IPEC 2011 - Kernelization

  30. Connection with Fixed Parameter Tractability • A parameterized problem P is Fixed Parameter Tractable (Î FPT) if there is an algorithm solving P that uses on inputs (x,k) in time • f(k) * |x|c • for a constant c • and some (computable) function f. IPEC 2011 - Kernelization

  31. Three variants of FPT • Non-uniform: • For constant c: for every k, there is an algorithm that runs in O(nc) time. • Uniform: • For constant c, for a function f: there exists an algorithm that runs in f(k)nc time. • Strongly uniform: • For constant c, for a computable function f: there exists an algorithm that runs in f(k)nc time. IPEC 2011 - Kernelization

  32. Relation between variants • Non-uniform is a proper subset of uniform. • Example 1: {(x,k) | k ÎX} for some undecidable set of integers X is in non-uniform but not in uniform FPT. • Example 2: if w is a graph parameter that does not increase by taking minors, then Robertson-Seymour theory tells that {(G,k) | w(G) £k} is in non-uniform FPT. • Uniform is proper subset of strongly uniform. • Proof by Downey and Fellows. IPEC 2011 - Kernelization

  33. A useful theorem with a curious proof Theorem (Folklore)A decidable parameterized problem P belongs to (uniform) FPT, if and only if it has a kernel. ProofÞ: If P has a kernel, then we have an FPT-algorithm: • Given input (x,k), • Apply kernelization and obtain (x’, k’). • Now, use any algorithm to solve (x’, k’). • Answer is the same. • Running time poly(|x|) + g(f(k)). • Ü: … IPEC 2011 - Kernelization

  34. A useful theorem with a curious proof (II) Theorem (Folklore) A decidable parameterized problem P belongs to (uniform) FPT, if and only if it has a kernel. Proof continuedÜ: If P has an algorithm A that uses f(k) nctime: • Suppose we have input (x, k) with |x| = n. • Run A for nc+1 steps. • If A halts we have the answer (transform to O(1) size yes- or no-instance). • If A does not halt, just output the original instance (x, k): we have nc+1 £f(k)* ncson £f(k). IPEC 2011 - Kernelization

  35. Variants Theorem (Folklore) A decidable parameterized problem P belongs to strongly uniform FPT, if and only if it has a kernel of size bounded by a computable function. • Same proof. • Problems in non-uniform FPT do not need to have a kernel. • Practical consideration on variants: it does not matter if you use uniform or strongly uniform, as long as you don’t make mistakes… IPEC 2011 - Kernelization

  36. Implications of the theorem • Positive: • Technique to obtain FPT-algorithms: • Make small kernel. • Algorithm on resulting small instance. • Negative: • If we have evidence that there exists no FPT-algorithm, we also have evidence that there exists no kernel. IPEC 2011 - Kernelization

  37. Downey-Fellows introduce complexity classes of parameterized problems that are unlikely to have FPT algorithms, e.g. W[1]. Hardness is shown with “parameterized variant of many-one reductions”. Theorem If W[1] = FPT, then the Exponential Time Hypothesis is not valid. CorollaryA parameterized problem that is W[1]-hard has no kernel, unless the ETH does not hold. Negative results IPEC 2011 - Kernelization

  38. Many W[1]-hard problems • Many problems are W[1]-hard, e.g.: Clique, Independent Set, Dominating Set, … • Canonical W[1]-complete problem: • Input: Boolean formula F in conjunctive normal form. • Question: Can we satisfy F by setting at most k variables to true? • Parameter: k. • No kernels for these, unless W[1] = FPT and hence the Exponential Time Hypothesis fails. IPEC 2011 - Kernelization

  39. Problems with large kernels • For many problems in FPT, we do not know small kernels. • Consider: Long Path • Given: Graph G=(V,E), integer k. • Question: Does G have a simple path of length at least k? • Parameter: k. • Is in FPT, but all known kernels have size exponential in k… IPEC 2011 - Kernelization

  40. Does Long Path have a kernel of polynomial size? Maybe not… • Suppose we have a polynomial kernel, say with kcbits size. Size bounded by kc k’ k IPEC 2011 - Kernelization

  41. Long path continued • Now, suppose we have a series of inputs to long path, say all with the same parameter:(G1,k), (G2,k), …, (Gr,k). … k k k IPEC 2011 - Kernelization

  42. Take the disjoint union • G1È G2È … È Gr has a simple path of length k, if and only if there exists a graph Githat has a path of length k. … k k k … k k IPEC 2011 - Kernelization

  43. And now, apply the kernel to the union … k k k … k k Size bounded by kc k’ IPEC 2011 - Kernelization

  44. What happened? • We have many (say r = k2c) instances of Long Path, and transform it to one instance of size < kc. • Intuition: this cannot be possible without solving some of the instances, as we have fewer bitsleft than we had instances to start with… • Theory (next) formalizes this idea. IPEC 2011 - Kernelization

  45. (Or-)Compositionality • A parameterized problem Q is or-compositional, if there is an algorithm that • Receives as input a series of inputs to Q, all with the same parameter (I1,k), …, (Ir,k); • Uses polynomial time; • Outputs one input (I’,k’)to Q; • k’ bounded by polynomial in k; • (I’,k’) Î Q if and only if there exists at least onej with (Ij,k) Î Q. IPEC 2011 - Kernelization

  46. Or-composition poly(t*n + k) time Qinstances poly(k) n x1 k x2 k x.. k xt k x* k* Q instance IPEC 2011 - Kernelization

  47. Compositionality gives lowerbounds for kernels Theorem (B, Downey, Fellows, Hermelin + Fortnow, Santhanam, 2008)Let P be a parameterized problem that is • Or-compositional, and • “Unparameterized form” is NP-complete. Then P has no polynomial kernel unless NP Í coNP/poly. • Variant for and-compositionality is still open problem… IPEC 2011 - Kernelization

  48. Application to Long Path • Input: t instances of Longest Path. • Take disjoint union, output as (G’, k). • G’ has a path of length k some Gi has a path of length k. • Output parameter trivially bounded in poly(k). ,k ,k ,k ,k ,k ,k Long Path does not admit a polynomial kernel unless NP⊆coNP/poly IPEC 2011 - Kernelization

  49. Additional techniques (1) • Polynomial parameter transformations (several authors): transform an argument that problem X does not have a polynomial kernel to an argument that problem Y does not have a polynomial kernel. • Chen et al. (2009): no kernels of size kc n1-e (unless NP Í coNP/poly). • Cross-compositions (B, Jansen, Kratsch, 2010): (composition of instances of problem X into instances of problem Y). • Composition of 2n instances suffices. IPEC 2011 - Kernelization

  50. Additional techniques (2) • Dell and van Melkebeek (2010): extend technique to precise lower bounds, e.g.: W(k2) bits for kernel for Vertex Cover (unless NP Í coNP/poly). • New results by Dell and Marx, 2011. • Weak composition: (Hermelin and Wu, 2011): polynomial lower bounds for several problems; super quasi polynomial lower bounds. IPEC 2011 - Kernelization

More Related