1 / 31

Transport Layer Issue in Wireless Ad Hoc and Sensor Network

Transport Layer Issue in Wireless Ad Hoc and Sensor Network. 1. Outline. Introduction TCP Operation Problem Statement TCP Feedback Ad hoc TCP Conclusion References Questions. 2. Transport Layer.

dolan
Download Presentation

Transport Layer Issue in Wireless Ad Hoc and Sensor Network

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transport Layer Issue in Wireless Ad Hoc and Sensor Network 1

  2. Outline • Introduction • TCP Operation • Problem Statement • TCP Feedback • Ad hoc TCP • Conclusion • References • Questions 2

  3. Transport Layer • Transport Layer is the fourth layer of OSI reference model. It provided transparent transfer of data between end system using the service of the network layer. • Two main protocols are • Transmission Control Protocol (TCP) • User Datagram Protocol (UDP) 3

  4. TCP vs. UDP TCP • Connection oriented service • Provides end-to-end reliable communication • Congestion control • Connection management • Flow control • Wireless ad hoc and wireless sensor network • UDP • Is very simple connectionless protocol • Does not guarantee reliability and correctness of the sequence of the packet • IPTV, streaming media, VoIP, and online games 4

  5. TCP vs. UDP 5

  6. TCP vs. UDP 6

  7. Mobile Ad hoc Network • Mobile Ad hoc network (MANET) is self-configured network which consist of mobile devices within a communication range of each other • Rapid topological change due to • Mobility of the nodes • Tradition TCP design is not suitable 7

  8. Wireless Sensor Network • A wireless sensor network (WSN) is a collection of sensor network that are capable of sensing physical phenomena • Rapid topological change due to • Mobility of the nodes • Tradition TCP design is not suitable 8

  9. TCP 9

  10. TCP Open Operation 10

  11. TCP Open Operation Active participant Passive participant (client) (server) SYN, SequenceNum = x , y 1 + SYN + ACK, SequenceNum = x Acknowledgment = ACK, Acknowledgment = y + 1 11

  12. TCP Data Transfer Operation 12

  13. TCP Termination Operation 13

  14. Active participant Passive participant (server) (client) FIN, SequenceNum = x 1 + x Acknowledgment = y FIN, SequenceNum= Acknowledgment = y + 1 14

  15. Problem Statement • TCP was originally designed and optimized for a wired network • In wired network route failure is not common • In mobile ad Hoc and sensor network route failure is frequent and it is unpredictable • Traditional TCP misinterpreted route failure as congestion problem 15

  16. TCP misinterpretation • The sender TCP attempt to perform the following: • Invoke congestion control mechanism • Retransmit unacknowledged packet • Enter a slow rate recovery phase • Waste the scarce power and BW of the sender and intermediate nodes 16

  17. Solution • TCP-feedback (TCP-F) • Ad hoc TCP or (ATCP) 17

  18. TCP-F • Network layer provide feedback to the intermediate node and the source node’s TCP agent by notification packet • Route Failure Notification (RFN) packet • Rout Re-establishment Notification (RFN) packet • The point where the route is disconnected is called failed point (FP) • The source node changes from active state to snoozing state when it receives RFN • The route failure time (RFT) ensures the sender does not remain in the snoozing state forever 18

  19. TCP-F D N RFN RFN S Failed Point A B C D E G New Route F 19

  20. RFN RRN RRN RFN RFN RRN RRN S D A B C C TCP-F Failed Point Snoozing State 20

  21. TCP-F issue • It does not re-calculation the congestion window upon establishing a new route • Out-of- order packet is not optimized • Bit error rate is not considered 21

  22. A TCP • ATCP is a thin layer that is inserted between the IP and TCP • It listen the network state information provided by Explicit Congestion Notification (ECN) and by the ICMP “Destination Unreachable” message • The Source node change from active state to persist state when ICMP message is detected • ATCP change from connected to disconnected mode 22

  23. ATCP • TCP generate probe packet while the source is in persist mode • Continuously probe the network until a new route is established • Destination node send ACK packet 23

  24. ATCP Advantage • Standard TCP/IP is not modified • ATCP is invisible to TCP • ATCP does not interfere when TCP is delivering end-to-end message between a mobile node to a wired network • Congestion window is calculated to adapt with the new route BW requirement 24

  25. ATCP Drawback • The source node can remain in the persist mode forever • The probing mechanism can generate problem in case of high load 25

  26. TCP-F vs. ATCP 26

  27. Conclusion • Traditional TCP misinterpret route failure as a congestion problem • It has to be optimized to work with wireless ad hoc and sensor network • TCP -F • Ad hoc TCP 27

  28. References [1] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feedback based scheme for improving TCP performance in ad hoc wireless networks,” in Conference on Distributed Computing Systems, Amsterdam, Netherlands, May 1998, pp. 472–479. [2] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE JSAC, vol. 19, no. 7, pp. 1300–1315, Jul. 2001. [3] H.AL.Ahmed,A.Eitan,and N.Philippe, “A Survey Of TCP over Ad Hoc Networks,” June, 2005 [4] “Networking Technology Layer 4,” class notes for ELG 5369, Departemnt of Electrical and computer Engineering, Univeristy of Ottawa, Ottawa, Fall 2010. [5] R.Eric, “TCP vs. UDP” May,2004 http://www.skullbox.net/tcpudp.php 28

  29. Questions 1 • Why is the traditional TCP is not suitable in mobile ad hoc and sensor network • Because route failure or topological change is misinterpreted as a congestion problem 29

  30. Question 2 • TCP three way handshaking open operation is shown in the diagram below. What is the value of x and y? • x=700, y=501 (client) (server) SYN, SequenceNum = 500 x SYN + ACK, SequenceNum = y Acknowledgment = ACK, Acknowledgment = 701 30

  31. Question 3 • In TCP-F technique, the route failure notification (RFN) packet changes the source node’s TCP state from an active state to a snoozing state. Before receiving the RFN packet, the source was transmitting the packet at a rate of 100Kbit/sec. Upon receiving the route retransmission notification (RRN) packet, the sender node resumes transmission.  At what rate the source node resume transmitting?Answer: 100Kbit/sec 31

More Related