1 / 14

Consumption, Production, Welfare B: Choice under Uncertainty (c‘td)

Consumption, Production, Welfare B: Choice under Uncertainty (c‘td). Univ. Prof. dr. Maarten Janssen University of Vienna Winter semester 2013. Risk aversion. Expected utility does not mean we only consider expected value of a lottery Risk aversion: u(w) is concave, where w is wealth

dori
Download Presentation

Consumption, Production, Welfare B: Choice under Uncertainty (c‘td)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Consumption, Production, Welfare B:Choice under Uncertainty (c‘td) Univ. Prof. dr. Maarten Janssen University of Vienna Winter semester 2013

  2. Risk aversion • Expected utility does not mean we only consider expected value of a lottery • Risk aversion: u(w) is concave, where w is wealth • Risk neutral: u(w) is linear and only expected value matters • Risk loving: u(w) is convex • Figures • Risk aversion: expected utility of the lottery is smaller than the utility of the expected value: +) • Degree of absolute risk aversion measured by Arrow-Pratt coefficient: • Constant absolute risk aversion utility function: • Degree of relative risk aversion measured by Arrow-Pratt coefficient: • Constant relative risk aversion utility function:

  3. Risk premium • F(.) is the cumulative distribution function of the lottery over wealth • Certainty equivalence c(F,u) is defined as • Risk premium (bold red line segment) is the amount of money you are willing to give up to exchange a lottery with an expected value of for the certainty equivalence of that lottery: u c(F,u) w

  4. How much are people willing to pay for full Insurance? • What is the expected utility of the situation without insurance? • Full insurance takes all risks away. You are indifferent between risky situation and insured situation if after insurance you have x such that • But this is the certainty equivalent • Maximal willingness to pay is the risk premium! • How does this depend on degree of risk aversion? • If an individual is more risk averse than another, what can we say about the certainty equivalent? • What is the risk premium if you are risk neutral? • Fair bet is one that leaves expected income unchanged (fair price is what a risk neutral person is just willing to pay for fair bet) • Why is insurance (some demand, others provide) possible?

  5. Probability premium • For any utility function with risk aversion, we have that for any w and any ε, • How much should probabilities be changed away from ½ such that equality is restored? Probability premium ) such that • Figure

  6. Small experiment: What would you choose? • A1: 1 M euro for sure • Or • A2: 10% chance of 5M euro, 89% chance of 1 M euro and 1% chance of 0 • ============= • A3: 10% chance of 5M euro, 90% chance of 0 • A4: 11% chance of 1 M euro and 89% chance of 0

  7. What does expected utility theory say? • Triangle representation (see article by Mark Machina) • Three possible outcomes • x: 0 • y: 1 M • z: 5 M • Choice between A1 and A2? Depends on risk aversion • Choice between A3 and A4? Also Depends on risk aversion • But consistency between two choices.

  8. Indifference curves in triangle • or • Straight, upward sloping, parallel lines • Does not depend on degree of risk aversion • The larger the slope, the stronger the risk aversion (red more risk averse than green)

  9. Allais’ Paradox • Many people do not make consistent choices (according to expected utility) • Choose A1 and A3 • Can only be if indifference curves are not parallel straight lines, as line through A1 and A2 has slope of 10 (10% more of z and 1% more of x) and line through A3 and A4 as well • Fanning out: when you are better off, you are more risk averse than when you are not

  10. Alternatives to EUT • Transformations of probabilities, e.g., • Kahnemann, Tversky (1979) • People tend to attach more weight to low probability events than probability suggests

  11. Insurance: anotherlook • Two statesoftheworld on axis (accidentdid happen, or not) • Initial endowment: point without insurance (blue dot) (w,0) • Indifferencecurve • Why not straightline? • Interpretation • Fair insurance: , where p is prob ofaccident, w isdamageand f isinsurancefee • Competitioninterpretation Wealthaccident Wealthnoaccident

  12. Insurance: optimal choice • Fair insurance: • Fullinsurancepoint (w-f,w-f) on 45 line • Slope fair insurancelineis • Indifferencecurve.At 45lineslopeis • Ifriskaverseconsumersareoffered fair insurancethey will alwaysbuyfullinsurance. Wealthaccident Wealthnoaccident

  13. Measures of Risk • First-order Stochastic dominance: • Distribution has first-order stochastic dominance over if • Define • Second-order stochastic dominance: • Distribution has second-order stochastic dominance over if for all y. • If is a mean-preserving spread (same mean, larger variance) of , then has second-order stochastic dominance over • Figures

  14. Why do people buy lottery tickets? • Risk loving (obvious answer), • but most people seem to be rather risk averse (buy insurance) • Risk averse in the “normal domain of everyday life”, but like to enjoy increase in status (Friedman and Savage, 1948) • Figure with risk aversion in normal areas of income, risk loving in much higher areas of income • Overestimate likelihood of winning price • Kahnemann, Tversky (1979) • Prize winners are advertised, get attention.

More Related