210 likes | 225 Views
Explore acceleration in velocity-time graphs through examples and problems. Learn about positive, negative, and zero acceleration scenarios and how to calculate average acceleration. Practice with homework problems included.
E N D
Journal #12 • If the trend continues, where would the object be at 10 seconds?
Chapter 3.1 • Acceleration
Velocity-time Graphs • A graph that plots an object’s velocity versus the time. • The rate at which an object’s velocity is changing is called acceleration and can be found by calculating the slope of the velocity-time graph.
Facts about acceleration: • Acceleration is the change in velocity divided by the time it takes to make that change. • It is possible to have positive or negative acceleration as well as acceleration equal to zero. • Acceleration is a vector quantity with the SI unit of m/s2, pronounced “meters per second squared.” • A change in direction will cause a change in acceleration.
pos Velocity (m/s) 0 Time (s) neg Acceleration Possibilities (there are 9)
If initial velocity is zero… 3 possibilites • vi= 0 and a = 0: • The object is at rest and remains at rest • vi= 0 and a = positive: • The object is at rest and begins to move forward with increasing speed. • vi= 0 and a = negative: • The object is at rest and begins to move backward with increasing speed.
If initial velocity is positive… 3 possibilities • vi= positive and a = negative: • The object is moving in a forward direction and is decreasing speed. • vi= positive and a = 0: • The object is moving in a forward direction at a constant speed. • vi= positive and a = positive: • The object is moving in a forward direction and is increasing speed.
If initial velocity is negative… 3 possibilites • vi= negative and a = negative: • The object is moving in a backward direction and is increasing speed. • vi= negative and a = 0: • The object is moving in a backward direction at a constant speed. • vi= negative and a = positive: • The object is moving in a backward direction and is decreasing speed.
Calculating Average Acceleration This formula is cannot fit into any “magic triangle”, so we have to learn it the regular way.
Example Problem 1 • Describe the motion of the object represented in this graph:
From 0 to 5.0 s: • Speeds up from rest at a constant rate • From 5.0 to 10.0s: • Remains at a constant speed of 30.0m/s • From 10.0 to 15.0s: • Decreases in speed from 30 to 20m/s • From 15.0 to 20.0s: • Remains at a constant speed of 20m/s • From 20.0 to 25.0s: • Comes to a stop
Example Problem 2 • Find the uniform acceleration that causes a car’s velocity to change from 32 m/s to 96 m/s in an 8.0-s period.
Ex Prob 2 picture t = 8.0s a = ? Notice how every number in the problem is represented in the picture! vi = 32m/s vf = 96m/s
Ex Prob 2 work Fill in the left-hand line up! • a = • vf = • vi = • t =
Ex Prob 2 work • a = ? • vf = 96 m/s • vi = 32 m/s • t = 8.0s
Example Problem 3 • A car with a velocity of 22 m/s is accelerated uniformly at the rate of 1.6 m/s2 for 6.8 s. What is its final velocity?
Ex Prob 3 picture t = 6.8s a = 1.6m/s2 vi = 22m/s vf = ?
Ex Prob 3 work Fill in the left-hand line up! • a = • vf = • vi = • t =
Ex Prob 3 work • a = 1.6 m/s2 • vf = ? • vi = 22 m/s • t = 6.8 s
Homework Problems • P. 61, #3 and 4 • P. 64, #6-10