1 / 16

Chapter 3-Inequalities

Chapter 3-Inequalities. Lesson 3.5. Solving Compound Inequalities. Vocabulary. Compound Inequality Two inequalities that are joined by the word and or the word or . Writing a compound inequality . Let’s say you have the inequalities: X ≥ -5 AND X ≤ 7

dugan
Download Presentation

Chapter 3-Inequalities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3-Inequalities

  2. Lesson 3.5 Solving Compound Inequalities

  3. Vocabulary • Compound Inequality • Two inequalities that are joined by the word andor the word or

  4. Writing a compound inequality • Let’s say you have the inequalities: • X ≥ -5 AND X ≤ 7 • You can join them together as a COMPOUND INEQUALITY by writing it this way: • -5 ≤ X ≤ 7

  5. Formula for Compound Inequality Smaller Number Larger Number Inequality Sign Inequality Sign Variable

  6. Graphing Compound Inequalities • Use a number line to graph inequalities. • Graph -5 ≤ X ≤ 7 • The black shaded portion represents the compound inequality above -7 -6 -5 -4 -3 -2 –1 0 1 2 3 4 5 6 7 8

  7. Write and Graph the following Compound Inequalities • All real numbers that are AT LEAST -2 and AT MOST 4. x ≤ 4 and x ≥ -2 -2 ≤ x ≤ 4

  8. Write and Graph the Compound Inequality • Temperatures that are ABOVE 32 degrees but NOT AS HIGH AS 40 degrees. t > 32 and t < 40 32 < t < 40

  9. Solving a Compound Inequality Containing AND • Solve -4 < x – 5 ≤ -1 • First step: • Write the compound inequality as TWO inequalities joined by AND -4 < x – 5 AND x – 5 ≤ -1

  10. Solving Compound Inequalities Containing AND • Second Step: • Solve each inequality as you normally would. • -4 < x – 5 AND x – 5 ≤ -1 +5 + 5 +5 +5 1 < x AND x ≤ 4 Solution: 1 < x ≤ 4

  11. Examples: • -6 ≤ 3x < 15 • -3 < 2x – 1 < 7 • 7 < -3x + 1 ≤ 13

  12. Writing Compound Inequalities Containing OR • A solution of a compound inequality joined by the word or is any number that makes EITHER inequality true. • Example: • All real numbers that are less than -3 OR greater than 7. X < -3 or X > 7

  13. Graphing Compound Inequalities Containing OR • Use a number line to graph inequalities. • Graph x < -3 or x > 7 -7 -6 -5 -4 -3 -2 –1 0 1 2 3 4 5 6 7 8

  14. Solving a Compound Inequality Containing OR • Solve 4v + 3 < -5 OR -2v + 7 < 1 • First step: • Write the compound inequality as TWO inequalities joined by OR 4v + 3 < -5OR-2v + 7 < 1

  15. Solving Compound Inequalities Containing OR • Second Step: • Solve each inequality as you normally would. • 4v + 3 < –5 OR -2v + 7 < 1 - 3 -3 - 7 -7 4v < -8 -2v < -6 ÷ 4 ÷ 4÷ -2 ÷ -2 v < - 2 OR v > 3 - 2 3

  16. How do I know which symbol to use in a word problem? • Look for these WORD CLUES to help you determine which inequality symbol to use.

More Related