1 / 7

Click on Slide Show at top of screen Then on View Show

Click on Slide Show at top of screen Then on View Show. Step 1 : Create model through extensive training set. AAA AAC AAG AAT ACA . . . TTG TTT. Training Set.

dyami
Download Presentation

Click on Slide Show at top of screen Then on View Show

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Click on Slide Show at top of screen Then on View Show

  2. Step 1: Create model through extensive training set AAAAACAAGAATACA . . .TTGTTT TrainingSet AAGCTTGACCAAAAAGTTAAAACACTGACGGCAAATAATCAATGACTATCAGACAGAGAATCATCGTGCTGTCAGTAAAACCTCTGATTTCGATCTTTACCATAATTGTTATGTTGTAATGACTAACCAGACTATCTTTTACAGAGCTTCTGGTTAACACTTGTCTAATTAGACATTGATAATGTTTGTGGGGGTTGGTCATCAGGAATGGTAAATAGCAATTACCCTTCAGACTTTCCTATGAGACGCTCCGCCAACGAGCAGTGTCTCTTAAAGAACGTTATGAGCGCTCAGTTAACTTCAGAAATTCACGGCGGAAATCCATAGTTATTATTACTTATGACTAAAACAAAATTACTATGGCGGCTTGTTTAATATAGATTCTGTGTTCTGAGAAATGACTTTTAAAGTCCCACTAACTTTTTTCTCATCTATTGCTATATTTCGACTTTAAAACTTATAGTAGATGGCTTAATTCTCAAATAACAAACTCATTTTTAGTAGATATTTCATGCAAACTGAGGTTTTTAGTGATATTTTCCCCTTATTGAGTACAGCCACTCCACAAACCTTAGAATGGCTACTCAATATTGCAATTGATCATGAATATCCCACTGGTAGAGCAGTTTTAATGGAAGATGCCTGGGGTAATGCAGTTTATTTCGTTGTATCTGGATGGGTAAAAGTTCGGCGCACCTGTGGAGATGATTCGGTAGCTTT Surrogate FiltersGene finders Markov Model-based recognition

  3. AAAA: 33% AAAC: 25% AAAG: 12% AAAT: 30% Surrogate FiltersGene finders Markov Model-based recognition Step 1: Create model through extensive training set AAAAACAAGAATACA . . .TTGTTT TrainingSet AAGCTTGACCAAAAAGTTAAAACACTGACGGCAAATAATCAATGACTATCAGACAGAGAATCATCGTGCTGTCAGTAAAACCTCTGATTTCGATCTTTACCATAATTGTTATGTTGTAATGACTAACCAGACTATCTTTTACAGAGCTTCTGGTTAACACTTGTCTAATTAGACATTGATAATGTTTGTGGGGGTTGGTCATCAGGAATGGTAAATAGCAATTACCCTTCAGACTTTCCTATGAGACGCTCCGCCAACGAGCAGTGTCTCTTAAAGAACGTTATGAGCGCTCAGTTAACTTCAGAAATTCACGGCGGAAATCCATAGTTATTATTACTTATGACTAAAACAAAATTACTATGGCGGCTTGTTTAATATAGATTCTGTGTTCTGAGAAATGACTTTTAAAGTCCCACTAACTTTTTTCTCATCTATTGCTATATTTCGACTTTAAAACTTATAGTAGATGGCTTAATTCTCAAATAACAAACTCATTTTTAGTAGATATTTCATGCAAACTGAGGTTTTTAGTGATATTTTCCCCTTATTGAGTACAGCCACTCCACAAACCTTAGAATGGCTACTCAATATTGCAATTGATCATGAATATCCCACTGGTAGAGCAGTTTTAATGGAAGATGCCTGGGGTAATGCAGTTTATTTCGTTGTATCTGGATGGGTAAAAGTTCGGCGCACCTGTGGAGATGATTCGGTAGCTTT

  4. AACA: 30% AACC: 20% AACG: 15% AACT: 35% Surrogate FiltersGene finders Markov Model-based recognition Step 1: Create model through extensive training set AAAAACAAGAATACA . . .TTGTTT TrainingSet AAGCTTGACCAAAAAGTTAAAACACTGACGGCAAATAATCAATGACTATCAGACAGAGAATCATCGTGCTGTCAGTAAAACCTCTGATTTCGATCTTTACCATAATTGTTATGTTGTAATGACTAACCAGACTATCTTTTACAGAGCTTCTGGTTAACACTTGTCTAATTAGACATTGATAATGTTTGTGGGGGTTGGTCATCAGGAATGGTAAATAGCAATTACCCTTCAGACTTTCCTATGAGACGCTCCGCCAACGAGCAGTGTCTCTTAAAGAACGTTATGAGCGCTCAGTTAACTTCAGAAATTCACGGCGGAAATCCATAGTTATTATTACTTATGACTAAAACAAAATTACTATGGCGGCTTGTTTAATATAGATTCTGTGTTCTGAGAAATGACTTTTAAAGTCCCACTAACTTTTTTCTCATCTATTGCTATATTTCGACTTTAAAACTTATAGTAGATGGCTTAATTCTCAAATAACAAACTCATTTTTAGTAGATATTTCATGCAAACTGAGGTTTTTAGTGATATTTTCCCCTTATTGAGTACAGCCACTCCACAAACCTTAGAATGGCTACTCAATATTGCAATTGATCATGAATATCCCACTGGTAGAGCAGTTTTAATGGAAGATGCCTGGGGTAATGCAGTTTATTTCGTTGTATCTGGATGGGTAAAAGTTCGGCGCACCTGTGGAGATGATTCGGTAGCTTT

  5. 3rd order Markov model A C G TAAA 0.33 0.25 0.12 0.30AAC 0.30 0.20 0.15 0.35AAG 0.35 0.15 0.20 0.30 AAT 0.30 0.15 0.20 0.25 ACA 0.25 0.20 0.15 0.35 . . .TTG 0.25 0.30 0.15 0.30TTT 0.30 0.25 0.10 0.35 Candidategene 0.12 AAAGCAA… Surrogate FiltersGene finders Markov Model-based recognition Step 2: Assess candidate genes

  6. Surrogate FiltersGene finders Markov Model-based recognition Step 2: Assess candidate genes 3rd order Markov model A C G TAAA 0.33 0.25 0.12 0.30AAC 0.30 0.20 0.15 0.35AAG 0.35 0.15 0.20 0.30 AAT 0.30 0.15 0.20 0.25 ACA 0.25 0.20 0.15 0.35 . . .TTG 0.25 0.30 0.15 0.30TTT 0.30 0.25 0.10 0.35 Candidategene x 0.15 0.12 AAAGCAA…

  7. Surrogate FiltersGene finders Markov Model-based recognition Step 2: Assess candidate genes 3rd order Markov model A C G TAAA 0.33 0.25 0.12 0.30AAC 0.30 0.20 0.15 0.35AAG 0.35 0.15 0.20 0.30 AAT 0.30 0.15 0.20 0.25 ACA 0.25 0.20 0.15 0.35 . . .TTG 0.25 0.30 0.15 0.30TTT 0.30 0.25 0.10 0.35 Candidategene x 0.15 . . . 0.12 AAAGCTA… So far, not a good candidate!

More Related