710 likes | 1.03k Views
Presented By: Joseph R. LaPlant Shady Valley Fire Prot. Dist. Basic Haul Systems. Rope Rescue For. First Reponders. Course Objectives. Understand and use rope rescue terminology and equipment Be able to list many uses of rope and rope hardware
E N D
Presented By: Joseph R. LaPlant Shady Valley Fire Prot. Dist. Basic Haul Systems Rope Rescue For First Reponders
Course Objectives • Understand and use rope rescue terminology and equipment • Be able to list many uses of rope and rope hardware • Be able to recognize and list all safety considerations associated with rope rescue operations
Course Objectives • Recognize and list all components of a haul system • Be able to describe and calculate mechanical advantage • Be able to describe proper basic maintenance and care of rope and rope equipment
Course Objectives • Be able to describe and tie basic life safety knots • Perform a rescue operation utilizing a rope rescue haul system - Minimum score of 70% is required on written exam - 100% of all critical on performance checklist must be achieved for successful course completion.
Haul Systems Simple or compound rope systems, labeled by mechanical advantage, used to forcibly pull or haul an object over certain distance
Haul Systems Consist of • Static Kern Mantle rope • an anchor point • pulleys • carabiners • rope grabs (prusiks or cams) Must utilize at least ½ inch static kern mantle rope meeting NFPA 1983 specifications.
NFPA 1983 The standard for life safety rope and safe working loads. • Single person working load: 300 lbs. • Two person working load: 600 lbs. • Rope rescue should always utilize a 15:1 safety ratio (load x 15) • Two person working load: (600 x 15 = 9000 lbs)
Rope Construction Laid Rope • Made of multiple strands of naturally occurring fibers • Fibers are five to 14 ft in length • Fibers are twisted together to form a single length • Examples: hemp and manila
Rope Construction Braided Rope • Cotton fiber ropes • Constructed by braiding fibers together • Strands are braided into a single length of rope • Examples: sailing rope
Rope Construction Braided-on-braid • Cotton fiber ropes • Constructed using a hollow core, cotton construction • Braid-on-braid ropes are usually used in marine applications
Rope Construction Kernmantle • The Kern, is a high strength inner core constructed of a continuous synthetic material which runs the entire length of the rope. • The Mantle, is a braided outer cover or sheath that protects the kern from cuts and abrasions. • The core of kernmantle rope makes up to 75% of the rope overall length.
Static vs. Dynamic Kernmantle is made of parallel filaments or filaments spiraled into cords • Dynamic – stretches 20% to 40% of its length when under a load. • Static – stretches only 2% to 3% its length when under a load.
Types of Rope • Utility Rope – Any rope used for applications other than life safety. • Water Rescue Rope – made of polypropylene, water rescue ropes cannot be used for rappelling. • Life Safety Rope – any rope meeting the NFPA standard 1983 for life safety applications.
Factors Which Affect Rope • tree bark • concrete • chemical exposure • rocks • bends • hardware • knots • water • extreme temp. • ANY ROPE THAT HAS RECEIVED A SHOCK SHOULD BE TAKEN OUT OF SERVICE IMMEDIATELY!
Care and Maintenance • Clean using mild soap and water • Inspect after each use • Never wash on the ground or in top loading wash machines • Machine wash only in approved extractors (Daisy prior to washing in extractors) • Air dry only; DO NOT DRY IN THE SUN!
Storage • Store in bags away from abrasives and chemicals • Always store away from sunlight • Periodically inspect for abrasion and tears • Pre-packed systems should be periodically broken down and rebuilt
Webbing Two Types • Tubular – rated at 4,000 lbs end to end; nylon forms a continuous tube • Edge Stitched – single nylon layer stitched together; NOT FOR RESCUE!
Carabiners • Five Basic Parts • Spine • Latch • Gate • Lock sleeve • Hinge Pin
Carabiners Aluminum • Used in sport applications • Lighter, less expensive • Do not rust or wear out like steel • Breaking strength up to 6,000 lbs
Carabiners Steel • ALWAYS used for rescue • Stronger, less susceptible to abrasion • More expensive • Requires regular maintenance • Breaking strength up to 13,000 lbs
Descent Control Devices • Provide rope control utilizing varying levels of friction. • NFPA 1983 requires general use DCDs to with stand a 2,400 lbs load with out damaging the rope • DCDs must with stand 5,000 lbs loads without failure
Descent Control Devices Rescue Figure-8 • Ears prevent rope from slipping up forming a girth hitch • Rescue 8s can be tied off, preventing the rope from slipping
Descent Control Devices Rappel Racks Consist of several steel or aluminum bars mounted on a U-shaped rack • Bars create variable degrees of friction • Rope threaded straight through a rack eliminates “turning” encountered with Figure 8s
Descent Control Devices • Figure 8 • Designed only as a descent or rappelling device • Only for rappels of 100 ft. or less
Ascending Devices Used for one way movement of a rope and for climbing ropes. Examples: Cam ascenders Handled ascenders Prusiks
Ascending Devices Mechanical Ascenders • Can be applied to any working rope • Apply perpendicular pressure to the rope • Mechanical ascenders can “de- sheath” a rope with as little as 1,000 lbs of pressure
Ascending Devices Prusik Cords • Can be used as “soft rope grabs” • Handle up to 3,000 lbs • Create mechanical advantage for haul systems • Can be used under shocked loads with out fear of “de-sheathing” ropes
Pulleys Pulleys are used for: • Change in directions • To reduce friction • Create mechanical advantage for haul systems
Pulleys Pulley Construction • Sheaves • Side Plates • Axles • Bearings NFPA 1983 states that pulleys must withstand 5,000 lbs static without distortion and 8,000 lbs with out failure
Special Pulleys Some pulleys are designed to solve technical rope problems • Prusik Minding • Knot-passing • Double or Triple Sheave
Edge Protection Up to 90% of all rope failures are due to improper edge protection! Edge Protectors • Reduce rope abrasion • Can be made of canvas, hose or turnout coats • Dynamic Protectors – help reduce friction and are used when ropes are moving across surfaces
Harnesses • Requirements are listed in NFPA 1983 • Must have permanent labeling; listing harness class, date of manufacture and sizing information
Harnesses Harness Classes • Class I • Seat style • For emergency escape and one person loads • NOT FOR RESCUE
Harnesses • Class II • Seat style approved for rescue • Can be used for two person loads
Harnesses • Class III • Full body harnesses • Used when inversion is possible • Handles one or two person loads • Requires no prior knowledge on the part of the patient once in the harness
Harnesses • Ladder Belts • Waist belts • May be used as positioning devices • For emergency self rescue only
Knot Terms • Bend • Hitch • Anchor • Safety • Whip • Running end • Working end • Standing part • Bight • Round Turn
Rescue Knots • Clove Hitch • Water Knot • Munter Hitch • Tensionless Wrap • Overhand • Figure 8 • Figure 8 On-a-bight • Figure 8 Bend • Figure 8 Follow Through
Student Activity #1 Knot Tying
Anchor Points Type I – Natural Anchors • Rocks • Trees Type II – Manmade Anchors • Vehicles • Utility Poles
Anchor Considerations • How much is the anticipated load? • Is the anchor suitable given the direction of the load? • Does the anchor have sharp edges? • Is the anchor rusted, broken or rotten? • How will you attach to the anchor? • Does the anchor have sufficient mass?
Attaching to an Anchor • Use 1” tubular webbing • Double webbing • Approach must not exceed 120 degrees • 90 degrees is optimal for field use
Attaching to an Anchor • Use a 15:1 safety ratio • Anchors must be “bomb proof” • Anchors should weigh the same or more than the anticipated load • Trees should only be used if they have a diameter greater than 4 inches All anchors should be edge protected!
Anchoring to Vehicles • Should only be used as a last resort! • Keep anchor straps away from hot surfaces • Chock all wheels • Shut off engine • Remove keys/shut off batteries • Post a “guard” • Never use vehicles to haul people!
Secondary Anchors • Run mainline for primary to secondary and tie it off • Should be as close to “in-line” with primaries as possible • Parallel anchors may be used as a single primary anchor
Terrain • Flat • Angles of 0 to 15 degrees • Rescuers may carry litter with out falling • No rope system required • No need to “tie in” rescuers • No technical equipment or training needed
Terrain • Low • Angle of 15 to 40 degrees • Incline or environment makes carry difficult • Tag line or anchored system needed to stabilize the litter • Rescuers not required to “tie in” to the litter • Risk of fall injuries are increased
Terrain • Steep • Angle of 40 to 65 degrees • Haul system required to move patient • Failure may have catastrophic result for rescuers and patient • Load is shared by rescuers and patient • Requires rescuers to “tie in” to litters
Terrain • High or Vertical • Angle of 65 to 90 degrees • Attendant required, tied in to the litter • Rope system for raising and lowering required • Attendant suspended on separate line for the litter bridle • Failure of system would cause serious injury or death.
Mechanical Advantage • Haul systems are labeled by mechanical advantage, i.e. 3:1, 4:1, etc. • Each turn in a haul systems yields one unit of mechanical advantage using pulleys • In a 3:1 system, for every unit of input force, the system will yield three units of output force