250 likes | 420 Views
Lesson 2-6. Solving Polynomial Equations by Factoring – Part 2. Objective:. To solve polynomial equations by various methods of factoring, including the use of the rational root theorem. Objective:.
E N D
Lesson 2-6 Solving Polynomial Equations by Factoring – Part 2
To solve polynomial equations by various methods of factoring, including the use of the rational root theorem. Objective:
When trying to factor a quadratic into two binomials, we only ever concern ourselves with the factors of the a (leading coefficient) and c (constant term).
Solve: 3x2 – 11x – 4 = 0
Solve: 3x2 – 11x – 4 = 0 (3x + 1)(x – 4) = 0 Solving for x x = - 1/3 or x = 4
Solve: 3x2 – 11x – 4 = 0 (3x + 1)(x – 4) = 0 Solving for x x = - 1/3 or x = 4 So we only concerned ourselves with the factors of 3 and 4.
We call the possible factors of c p values.
We call the possible factors of c p values. We call the possible factors of a q values.
This leads us into what is called the Rational Roots Theorem.
This leads us into what is called the Rational Roots Theorem. Let P(x) be a polynomial of degree n with integral coefficients and a nonzero constant term.
This leads us into what is called the Rational Roots Theorem. Let P(x) be a polynomial of degree n with integral coefficients and a nonzero constant term. P(x) = anxn + an-1xn-1 + …+ a0 where a0 ≠0
This leads us into what is called the Rational Roots Theorem. P(x) = anxn + an-1xn-1 + …+ a0 where a0 ≠0 If one of the roots of the equation P(x) = 0 is x = p/q where p and q are nonzero integers with no common factor other than 1, then p must be a factor of a0 and q must be a factor of an !
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Note: If there are any rational roots, then they must be in the form of p/q.
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Note: If there are any rational roots, then they must be in the form of p/q. 1st: List all possible q values: ±1(±3)
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Note: If there are any rational roots, then they must be in the form of p/q. 1st: List all possible q values: ±1(±3) 2nd: List all possible p values: ±1(±4); (±2)(±2)
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Therefore, if there is a rational root then it must come from this list of possible p/q values:
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Therefore, if there is a rational root then it must come from this list of possible p/q values: p/q ±(1/1, 1/3, 4/1, 4/3, 2/1, 2/3) which means there are 12 possibilities!
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Now, determine whether any of the possible rational roots are really roots. If so, then find them.
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Lets first evaluate x = 1.
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Lets first evaluate x = 1. Do you remember the quick and easy way to see if x = 1 is a root?
According to the rational roots theorem what are the possible rational roots of :Px) = 3x4 + 13x3 + 15x2 – 4 = 0 Now, check the other possibilities using synthetic division.
Pg. 8425 – 39 odd Assignment: