1 / 18

Distribución Normal

Distribución Normal. valor - p. VARIABLES NUMÉRICAS. VARIABLES NUMÉRICAS. Medidas de la Tendencia Central y Variabilidad. 95%. 95 %. Promedio aritmético ± desviación standard  ±  x ± s. Percentiles P 1 P 99. . 50%. 0.50. 50%. 0.50. - . + . .

edith
Download Presentation

Distribución Normal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Distribución Normal valor - p

  2. VARIABLES NUMÉRICAS

  3. VARIABLES NUMÉRICAS Medidas de la Tendencia Central y Variabilidad 95% 95% • Promedio aritmético ± desviación standard •  ±  • x ± s Percentiles P1 P99

  4. 50% 0.50 50% 0.50 -  +   DISTRIBUCION NORMAL

  5. 50% 50% -  +       + 1.96 - 1.96 DISTRIBUCION NORMAL 95%

  6.  = 0 Z = -1 Z = 0 Z = 1  = 1 Valores de z DISTRIBUCIÓN NORMAL ESTÁNDAR EJE Z PROB( 0  Z  1 ) = 0.3413 PROB( - 1  Z  1 ) = 0.6826

  7.  = 0 Z = - 1.96 Z = 0 Z = 1.96  = 1 Valores de z 0.4750 x2 = 0.95 = 95% PROB ( - 1.96Z  1.96 ) = DISTRIBUCIÓN NORMAL ESTÁNDAR EJE Z PROB( 0  Z  1.96 ) = 0.4750

  8.  = 0 Z = 0 Z = 1.96  = 1 Valores de z 0.5 + 0.4750 = 0.9750 PROB (Z  1.96 ) = DISTRIBUCIÓN NORMAL ESTÁNDAR EJE Z PROB( 0  Z  1.96 ) = 0.4750

  9.  = 0 PROB (Z 1.96 ) = 0.5 - 0.4750 = 0.0250 0.5 Z = 0 Z = 1.96 PROB( 0  Z  1.96 ) = 0.4750  = 1 Valores de z DISTRIBUCIÓN NORMAL ESTÁNDAR PROB (Z 1.96 ) = ? EJE Z

  10.  = 0 -1.84 -1.08 0.87 1.45 PROB( 0  Z  1.45 ) = 0.4265 PROB( 0  Z  0.87 ) = 0.3078  = 1 Valores de z PROB ( 0.87  Z  1.45 ) = 0.4265 – 0.3078 = .0485 DISTRIBUCIÓN NORMAL ESTÁNDAR 0.1072 0 EJE Z

  11. CURVA NORMAL ESTANDAR p( xi 1.4528) = ? p( Z  1.69 ) = ?  = 0  = 1 O.4545 xi = 1 .4528 EJE Z 1.69 Z = 0 Z = Xi-  Z = = 1.69 0.0455  Concepto de valor-p CALCULO DE PROBABILIDADES Log TGPS = 1.25  = 0.12 ( sin Hepatitis ) EJE X  = 1.25

  12. O.4545 CALCULO DE PROBABILIDADES Log TGPS = 1.25  = 0.12 ( sin Hepatitis ) F+ = 4.55% EJE X  = 1.25 1.4528 NORMA ESPECIFICIDAD RECHAZAR 95.45 %

  13. CALCULO DE PROBABILIDADES Log TGPS = 1.55  = 0.13 ( con Hepatitis ) F- =22.66% 77.34 % EJE X  = 1.55 1.4528 NORMA NO RECHAZAR RECHAZAR SANGRE SENSIBILIDAD

  14. Pruebas Diagnosticas  1) Variable separadora 2) Criterio de Positividad SIN HEPATITIS ( - ) α Norma 1 .4528 F+ = 4.55% S= 0.12 CON HEPATITIS ( + )  s = 1.25 E= 0.13 F- = 22.66% β E = 1.55 TEST NEGATIVO TEST POSITIVO ESPECIFICIDAD SENSIBILIDAD

  15. Calcular falsos positivos Especificidad, falsos negativos y sensibilidad para cada NORMA • NORMA : • 1.40 • 1.54 • 1.35 • 1.25 • 1.50

  16. VALORES PREDICTIVOS DE UN TEST VALORES PREDICTIVO DEL TEST POSITIVO 77.34 % T + Sensib. 12% 22.66% Prev. E V P T + F- T - Prev. Sens. Espec F+ T + S 4.55% 1 - Prev. 88% Especif. 95.45 T -

  17. VALORES PREDICTIVOS DE UN TEST VALORES PREDICTIVO DEL TEST POSITIVO 77.34 % T + Sensib. 12% 22.66% Prev. E F- T - Prev. Sens. Espec F+ T + S 4.55% 1 - Prev. V P T - 88% Especif. 95.45 T -

  18. V P T - V P T + Norma TEST NEGATIVO TEST POSITIVO SANOS ( - ) ENFERMOS ( + ) α ESPECIFICIDAD β SENSIBILIDAD

More Related