500 likes | 531 Views
This lesson covers the vocabulary and concept of the distributive property in algebraic expressions. It includes examples and practice problems.
E N D
Vocabulary • Closure Property
Vocabulary • Closure Property If you combine any two elements of a set and the result is also included in the set, then the set is closed. • Distributive Property
Vocabulary • Closure Property If you combine any two elements of a set and the result is also included in the set, then the set is closed. • Distributive Property • a(b + c) = ab + ac (b + c)a = ba + ca • a(b – c) = ab – ac (b – c)a = ba – ca
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) =
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) =
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10)
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) +
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) + 8(4)
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) + 8(4) = 80 + 32 = 112
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 =
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 =
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 –
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 – 36
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 – 36 = 72 – 18 = 54
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) =
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) =
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2)
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) +
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x)
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) –
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1)
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 +
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x –
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x – 3
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x – 3
Vocabulary • Term
Vocabulary • Term y, p3, 4a, 5g2h • Separated by + or - • Like Terms
Vocabulary • Term y, p3, 4a, 5g2h • Like Terms 3a2 and 5a2 • Have EXACT same variables • Coefficient
Vocabulary • Term y, p3, 4a, 5g2h • Like Terms 3a2 and 5a2 • Coefficient numbers multiplied by the variable(s)
Vocabulary • Term y, p3, 4a, 5g2h • Like Terms 3a2 and 5a2 • Coefficient 17xy, m
Vocabulary • Term y, p3, 4a, 5g2h • Like Terms 3a2 and 5a2 • Coefficient 17xy, 1m
Example 4 • Simplify each expression. • 15x + 18x
Example 4 • Simplify each expression. • 15x + 18x
Example 4 Simplify each expression. a) 15x + 18x 33x
Example 4 Simplify each expression. a) 15x + 18x 33x
Example 4 • Simplify each expression. • 15x + 18x • 33x • b) 10n + 3n2 + 9n2
Example 4 • Simplify each expression. • 15x + 18x • 33x • b) 10n + 3n2 + 9n2
Example 4 • Simplify each expression. • 15x + 18x • 33x • b) 10n + 3n2 + 9n2 • 10n
Example 4 • Simplify each expression. • 15x + 18x • 33x • b) 10n + 3n2 + 9n2 • 10n + 12n2
Example 4 • Simplify each expression. • 15x + 18x • 33x • b) 10n + 3n2 + 9n2 • 10n + 12n2
Use Distributive Property 15 99 15 ( 100 – 1 )
Use Distributive Property 15 99 15 ( 100 – 1 ) 15 100 – 15 1
Use Distributive Property 15 99 15 ( 100 – 1 ) 15 100 – 15 1 1,500 – 15
Use Distributive Property 15 99 15 ( 100 – 1 ) 15 100 – 15 1 1,500 – 15 1,485
Assignments Pgs. 30-31 16-36 Evens, 42-52 Evens