1 / 44

Chapter 6: Errors, Error Detection, and Error Control

Chapter 6: Errors, Error Detection, and Error Control. Objectives. After reading this chapter, you should be able to: Identify the different types of noise commonly found in computer networks

elina
Download Presentation

Chapter 6: Errors, Error Detection, and Error Control

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 6: Errors, Error Detection, and Error Control

  2. Objectives • After reading this chapter, you should be able to: • Identify the different types of noise commonly found in computer networks • Specify the different error-prevention techniques, and be able to apply an error-prevention technique to a type of noise • Compare the different error-detection techniques in terms of efficiency and efficacy

  3. Objectives (continued) • Perform simple parity and longitudinal parity calculations, and enumerate their strengths and weaknesses • Cite the advantages of cyclic redundancy checksum, and specify what types of errors cyclic redundancy checksum will detect • Differentiate between the three basic forms of error control, and describe the circumstances under which each may be used

  4. Objectives (continued) • Follow an example of Stop-and-wait ARQ, Go-back-N ARQ, and Selective-reject ARQ

  5. Introduction • Noise is always present • If a communications line experiences too much noise • Signal will be lost or corrupted • Communication systems should check for transmission errors • Once an error is detected, a system may perform some action • Some systems perform no error control, but simply let the data in error be discarded

  6. Noise and Errors – White Noise • Also known as thermal or Gaussian noise • Relatively constant • Can be reduced • If white noise gets to strong • Can completely disrupt signal

  7. White Noise (continued)

  8. Impulse Noise • One of the most disruptive forms of noise • Random spikes of power • Can destroy one or more bits of information • Difficult to remove from an analog signal • May be hard to distinguish from original signal • Impulse noise can damage more bits if the bits are closer together (transmitted at a faster rate)

  9. Impulse Noise (continued)

  10. Impulse Noise (continued)

  11. Crosstalk • Unwanted coupling between two different signal paths • For example, hearing another conversation while talking on the telephone • Relatively constant • Can be reduced with proper measures

  12. Crosstalk (continued)

  13. Echo • The reflective feedback of a transmitted signal as the signal moves through a medium • Most often occurs on coaxial cable • If echo bad enough, it could interfere with original signal • Relatively constant • Can be significantly reduced

  14. Echo (continued)

  15. Jitter • The result of small timing irregularities during transmission of digital signals • Occurs when a digital signal is repeated over and over • If serious enough, jitter forces systems to slow down their transmission • Steps can be taken to reduce jitter

  16. Jitter (continued)

  17. Delay Distortion and Attenuation • Delay Distortion - occurs because the velocity of propagation of a signal through a medium varies with the frequency of the signal • Can be reduced • Attenuation - the continuous loss of a signal’s strength as it travels through a medium

  18. Error Prevention • To prevent errors from happening, several techniques may be applied: • Proper shielding of cables to reduce interference • Telephone line conditioning or equalization • Replacing older media and equipment with new, possibly digital components • Proper use of digital repeaters and analog amplifiers • Observe the stated capacities of the media

  19. Error Prevention (continued)

  20. Error Detection • Despite best prevention techniques, errors may still occur • To detect an error, error detection code has to be added to the data/signal • Let’s examine two basic techniques for detecting errors: • Parity checking • Cyclic redundancy checksum

  21. Parity Checks • Simple parity - If performing even parity, add a parity bit such that an even number of 1s is maintained • If performing odd parity, add a parity bit such that an odd number of 1s is maintained • For example, send 1001010 using even parity • For example, send 1001011 using even parity

  22. Parity Checks (continued) • What happens if the character 10010101 is sent and the first two 0s accidentally become two 1s? • Thus, the following character is received: 11110101 • Will there be a parity error? • Problem: Simple parity only detects odd numbers of bits in error

  23. Longitudinal Parity • Longitudinal parity • Adds parity bit to each character • Then adds row of parity bits after a block of characters • Row of parity bits is actually a parity bit for each “column” of characters • Row parity bits plus column parity bits add a great amount of redundancy to a block of characters

  24. Longitudinal Parity (continued)

  25. Longitudinal Parity (continued)

  26. Parity Checks (continued) • Both simple parity and longitudinal parity do not catch all errors • Simple parity only catches odd numbers of bit errors • Longitudinal parity is better at catching errors • But requires too many check bits added to a block of data • We need a better error detection method • What about cyclic redundancy checksum?

  27. Cyclic Redundancy Checksum (CRC) • CRC error detection method treats packet of data to be transmitted as a large polynomial • Transmitter • Using polynomial arithmetic, divides polynomial by a given generating polynomial • Quotient is discarded • Remainder is “attached” to the end of message

  28. Cyclic Redundancy Checksum (continued) • Message (with the remainder) is transmitted to the receiver • Receiver divides the message and remainder by same generating polynomial • If a remainder not equal to zero results  error during transmission • If a remainder of zero results  error during transmission

  29. Cyclic Redundancy Checksum (continued)

  30. Error Control • Once an error is detected, what is the receiver going to do? • Do nothing • Return an error message to the transmitter • Fix the error with no further help from the transmitter

  31. Error Control (continued) • Do nothing • Seems like a strange way to control errors • Some newer systems such as frame relay perform this type of error control • Return a message has three basic formats: • Stop-and-wait ARQ • Go-back-N ARQ • Selective-reject ARQ

  32. Stop-and-wait ARQ • Simplest error control protocol • A transmitter sends a frame then stops and waits for an acknowledgment • If a positive acknowledgment (ACK) is received, the next frame is sent • If a negative acknowledgment (NAK) is received, the same frame is transmitted again

  33. Stop-and-wait ARQ (continued)

  34. Go-back-N ARQ • Go-back-N ARQ and selective reject are more efficient protocols • They assume that multiple frames are in transmission at one time (sliding window) • A sliding window protocol allows transmitter to send up to the window size frames before receiving any acknowledgments • When a receiver does acknowledge receipt, the returned pack contains the number of the frame expected next

  35. Sliding Window Protocol

  36. Go-back-N ARQ (continued) • Using the go-back-N ARQ protocol, if a frame arrives in error, the receiver can ask the transmitter to go back to the Nth frame and retransmit it • After the Nth frame is retransmitted, the sender resends all subsequent frames

  37. Selective-reject ARQ • Most efficient error control protocol • If a frame is received in error, the receiver asks transmitter to resend ONLY the frame that was in error • Subsequent frames following the Nth frame are not retransmitted

  38. Selective-reject ARQ (continued)

  39. Selective-reject ARQ (continued)

  40. Selective-reject ARQ (continued)

  41. Selective-reject ARQ (continued)

  42. Correct the Error • For a receiver to correct the error with no further help from the transmitter requires a large amount of redundant information accompanying original data • This redundant information allows the receiver to determine the error and make corrections • This type of error control is often called forward error correction

  43. Error Detection in Action • Asynchronous transfer mode (ATM) incorporates many types of error detection and error control • ATM inserts a CRC into the data frame (the cell), which checks only the header and not the data • This CRC is also powerful enough to perform simple error correction on the header • A second layer of ATM applies a CRC to the data, with varying degrees of error control

  44. Summary • Noise in computer networks • Error-prevention techniques • Simple parity and longitudinal parity calculations • Cyclic redundancy checksum • Three forms of error control • Stop-and-wait ARQ, Go-back-N ARQ and Selective-reject ARQ

More Related