200 likes | 347 Views
A Primer in Bifurcation Theory for Computational Cell Biologists. John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute. Click on icon to start audio. tyson@vt.edu. Molec Genetics Biochemistry Cell Biology.
E N D
A Primer in BifurcationTheoryfor Computational Cell Biologists John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute Click on icon to start audio tyson@vt.edu
Molec Genetics Biochemistry Cell Biology The Dynamical Perspectivein Molecular Cell Biology Molecular Mechanism Kinetic Equations
MPF = Mitosis Promoting Factor Wee1 Cdc25
The Curse of Parameter Space Molec Genetics Biochemistry Cell Biology The Dynamical Perspectivein Molecular Cell Biology Molecular Mechanism Kinetic Equations
[Cyclin] Molecular Mechanism [CKI] Kinetic Equations State Space, Vector Field [MPF] Attractors, Transients, Repellors Henri Poincare (1890)
Molec Genetics Biochemistry Cell Biology The Dynamical Perspectivein Molecular Cell Biology Molecular Mechanism Kinetic Equations State Space, Vector Field Attractors, Transients, Repellors Bifurcation Diagrams Signal-Response Curves
Wee1 Cdc25 d MPF dt = k1 - (kwee + k2) * MPF + k25 (cyclin - MPF) = k1 - k2 * cyclin d cyclin dt
d MPF dt = … = 0 k1 / k2 d cyclin dt = k1 - k2 * cyclin = 0 MPF Cyclin
d MPF dt = … = 0 k1 / k2 d cyclin dt = k1 - k2 * cyclin = 0 MPF Cyclin
d MPF dt = … = 0 k1 / k2 d cyclin dt = k1 - k2 * cyclin = 0 MPF saddle-node Cyclin
d MPF dt = … = 0 k1 / k2 d cyclin dt = k1 - k2 * cyclin = 0 MPF Cyclin
p x t t Signal Response y x saddle-node saddle-node stable steady state unstable steady state One-parameter bifurcation diagram ON Variable, MPF (response) OFF Parameter, k1 (signal)
metaphase response (MPF) interphase signal (cyclin) Frog egg MPF MPF = MPF- P CycB (inactive) M-phase Promoting Factor Cdc25- P Cdc25
M M M I/M I I I nM Dcyclin B MPF activity depends on total cyclin concentration and on the history of the extract M I Cyclin concentration increasing M MPF activity I I I I I I zero nM Dcyclin B Cyclin concentration decreasing inactivation threshold at 90 min MPF activity zero bistability Wei Sha & Jill Sible (2003)
Oscillations MPF cyclin cyclin synthesis cyclin degradation APC MPF MPF- P (inactive) Cdc25- P Cdc25 negative feedback loop
Pomerening, Kim & Ferrell Cell (2005) Total Cyclin MPF activity MPF activity stable limit cycle Total Cyclin
uss Hopf Bifurcation sss stable limit cycle One-parameter bifurcation diagram max slc Variable, MPF min Parameter, k1
Molec Genetics Biochemistry Cell Biology The Dynamical Perspectivein Molecular Cell Biology Molecular Mechanism Kinetic Equations State Space, Vector Field Attractors, Transients, Repellors Bifurcation Diagrams Signal-Response Curves
Signal-Response Curve = One-parameter Bifurcation Diagram • Saddle-Node (bistability, hysteresis) • Hopf Bifurcation (oscillations) • Subcritical Hopf • Cyclic Fold • Saddle-Loop • Saddle-Node Invariant Circle Rene Thom
References • Strogatz, Nonlinear Dynamics and Chaos (Addison Wesley) • Kuznetsov, Elements of Applied Bifurcation Theory (Springer) • XPP-AUT www.math.pitt.edu/~bard/xpp • Oscill8 http://oscill8.sourceforge.net