110 likes | 199 Views
A Primer in Bifurcation Theory for Computational Cell Biologists Lecture 4: Global Bifurcations. http://www.biology.vt.edu/faculty/tyson/lectures.php. John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute. Click on icon to start audio. Signal-Response Curve =
E N D
A Primer in BifurcationTheoryfor Computational Cell BiologistsLecture 4: Global Bifurcations http://www.biology.vt.edu/faculty/tyson/lectures.php John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute Click on icon to start audio
Signal-Response Curve = One-parameter Bifurcation Diagram • Saddle-Node (bistability, hysteresis) • Hopf Bifurcation (oscillations) • Subcritical Hopf • Cyclic Fold • Saddle-Loop • Saddle-Node Invariant Circle
Homoclinic Orbits Heteroclinic Orbits saddle-loop saddle-saddle-connection saddle-node-loop
p < pHC p = pHC p > pHC Heteroclinic Orbits
p < pSL p < pSNIC p = pSL p = pSNIC p > pSL p > pSNIC Homoclinic Orbits Saddle- Loop Bifurcation Saddle- Node Invariant Circle
Homoclinic Bifurcation Finite amplitude, small frequency, infinite period Hopf Bifurcation Small amplitude, frequency = Im(l), finite period
Andronov-Leontovich Theorem In a two-dimensional system, a homoclinic orbit gives birth to a finite amplitude, large-period limit cycle; either stable: or unstable:
< 0:one stable limit cycle s < 0: one stable limit cycle • > 0: one unstable limit cycle s > 0: infinite # unstable limit cycles plus a stable chaotic attractor Shil’nikov Theorem In a three-dimensional system, a homoclinic orbit gives birth to a stable or unstable limit cycle, or to much more complicated behavior … Saddle Saddle-Focus l3 < l2 < 0 < l1 Re(l2,3) < 0 < l1 s = l1+ l2 s = l1 + Re(l2,3)
SL SL sss uss sss uss sss SN SN HB HB One-parameter Bifurcation Diagram Variable, x Parameter, p
One-parameter Bifurcation Diagram SL sss uss sss uss Variable, x sss SNIC Parameter, p
References • Strogatz, Nonlinear Dynamics and Chaos (Addison Wesley) • Kuznetsov, Elements of Applied Bifurcation Theory (Springer) • XPP-AUT www.math.pitt.edu/~bard/xpp • Oscill8 http://oscill8.sourceforge.net