1.11k likes | 1.61k Views
CHE-300 Review nomenclature syntheses reactions mechanisms. Alkanes Alkyl halides Alcohols Ethers Alkenes conjugated dienes Alkynes Alicyclics Epoxides. Alkanes Nomenclature Syntheses 1. reduction of alkene (addition of hydrogen) 2. reduction of an alkyl halide
E N D
CHE-300 Review nomenclature syntheses reactions mechanisms
Alkanes Alkyl halides Alcohols Ethers Alkenes conjugated dienes Alkynes Alicyclics Epoxides
Alkanes Nomenclature Syntheses 1. reduction of alkene (addition of hydrogen) 2. reduction of an alkyl halide a) hydrolysis of a Grignard reagent b) with an active metal and acid 3. Corey-House Synthesis Reactions 1. halogenation 2. combustion (oxidation) 3. pyrolysis (cracking)
Alkanes, nomenclature CH3 CH3CH2CH2CH2CH2CH3 CH3CHCH2CH2CH3 (n-hexane) (isohexane) n-hexane 2-methylpentane CH3 CH3 CH3CH2CHCH2CH3 CH3CCH2CH3 (no common name) CH3 3-methylpentane (neohexane) 2,2-dimethylbutane CH3 CH3CHCHCH3 CH3 (no common name) 2,3-dimethylbutane
Alkanes, syntheses • 1. Addition of hydrogen (reduction). • | | | | • — C = C — + H2 + Ni, Pt, or Pd — C — C — • | | • H H • Requires catalyst. • CH3CH=CHCH3 + H2, Ni CH3CH2CH2CH3 • 2-butene n-butane
Reduction of an alkyl halide • a) hydrolysis of a Grignard reagent (two steps) • i) R—X + Mg RMgX (Grignard reagent) • ii) RMgX + H2O RH + Mg(OH)X • SB SA WA WB • CH3CH2CH2-Br + Mg CH3CH2CH2-MgBr • n-propyl bromide n-propyl magnesium bromide • CH3CH2CH2-MgBr + H2O CH3CH2CH3 + Mg(OH)Br • propane
with an active metal and an acid • R—X + metal/acid RH • active metals = Sn, Zn, Fe, etc. • acid = HCl, etc. (H+) • CH3CH2CHCH3 + Sn/HCl CH3CH2CH2CH3 + SnCl2 • Cl • sec-butyl chloride n-butane • CH3 CH3 • CH3CCH3 + Zn/H+ CH3CHCH3 + ZnBr2 • Br • tert-butyl bromide isobutane
3. Corey-House Synthesis CH3 CH3 CH3 CH3CH-Br + Li CH3CH-Li + CuI (CH3CH)2-CuLi isopropyl bromide CH3 CH3 (CH3CH)2-CuLi + CH3CH2CH2-Br CH3CH-CH2CH2CH3 2-methylpentane (isohexane) mechanism = SN2 Note: the R´X should be a 1o or methyl halide for the best yields of the final product.
Alkanes, reactions 1. Halogenation R-H + X2, heat or hv R-X + HX a) heat or light required for reaction. b) X2: Cl2 > Br2 I2 c) yields mixtures d) H: 3o > 2o > 1o > CH4 e) bromine is more selective f) free radical substitution
CH3CH2CH2CH3 + Br2, hv CH3CH2CH2CH2-Br 2% n-butane n-butyl bromide + CH3CH2CHCH3 98% Br sec-butyl bromide CH3 CH3 CH3CHCH3 + Br2, hv CH3CHCH2-Br <1% isobutane isobutyl bromide + CH3 CH3CCH3 99% Br tert-butyl bromide
Alkyl halides nomenclature syntheses 1. from alcohols a) HX b) PX3 2. halogenation of certain alkanes 3. addition of hydrogen halides to alkenes 4. addition of halogens to alkenes 5. halide exchange for iodide reactions 1. nucleophilic substitution 2. dehydrohalogenation 3. formation of Grignard reagent 4. reduction
Alkyl halides, nomenclature CH3 CH3 CH3CHCH2CHCH3 CH3CCH3 Br I 2-bromo-4-methylpentane tert-butyl iodide 2-iodo-2-methylpropane 2o 3o CH3 Cl-CHCH2CH3 sec-butyl chloride 2-chlorobutane 2o
Alkyl halides, syntheses • 1. From alcohols • With HX • R-OH + HX R-X + H2O • i) HX = HCl, HBr, HI • ii) may be acid catalyzed (H+) • iii) ROH: 3o > 2o > CH3 > 1o (3o/2o – SN1; CH3/1o – SN2) • iv) rearrangements are possible except with most 1o ROH
CH3CH2CH2CH2-OH + NaBr, H2SO4, heat CH3CH2CH2CH2-Br n-butyl alcohol (HBr) n-butyl bromide 1-butanol 1-bromobutane CH3 CH3 CH3CCH3 + HCl CH3CCH3 OH Cl tert-butyl alcohol tert-butyl chloride 2-methyl-2-propanol 2-chloro-2-methylpropane CH3-OH + HI, H+,heat CH3-I methyl alcohol methyl iodide methanol iodomethane
…from alcohols: b) PX3 i) PX3 = PCl3, PBr3, P + I2 ii) ROH: CH3 > 1o > 2o iii) no rearragements CH3CH2-OH + P, I2 CH3CH2-I ethyl alcohol ethyl iodide ethanol iodoethane CH3 CH3 CH3CHCH2-OH + PBr3 CH3CHCH2-Br isobutyl alcohol isobutyl bromide 2-methyl-1-propanol 1-bromo-2-methylpropane
Halogenation of certain hydrocarbons. • R-H + X2, Δ or hν R-X + HX • (requires Δ or hν; Cl2 > Br2 (I2 NR); 3o>2o>1o) • yields mixtures! In syntheses, limited to those hydrocarbons that yield only one monohalogenated product. • CH3 CH3 • CH3CCH3 + Cl2, heat CH3CCH2-Cl • CH3 CH3 • neopentane neopentyl chloride • 2,2-dimethylpropane 1-chloro-2,2-dimethylpropane
Halide exchange for iodide. • R-X + NaI, acetone R-I + NaX • i) R-X = R-Cl or R-Br • ii) NaI is soluble in acetone, NaCl/NaBr are insoluble. • CH3CH2CH2-Br + NaI, acetone CH3CH2CH2-I • n-propyl bromide n-propyl idodide • 1-bromopropane 1-idodopropane • iii) SN2 R-X should be 1o or CH3
Reactions of alkyl halides: • Nucleophilic substitutionBest with 1o or CH3!!!!!! • R-X + :Z- R-Z + :X- • Dehydrohalogenation • R-X + KOH(alc) alkene(s) • Preparation of Grignard Reagent • R-X + Mg RMgX • Reduction • R-X + Mg RMgX + H2O R-H • R-X + Sn, HCl R-H
1. Nucleophilic substitution R-X + :OH- ROH + :X- alcohol R-X + H2O ROH + HX alcohol R-X + :OR´- R-O-R´ + :X- ether R-X + -:CCR´ R-CCR´ + :X- alkyne R-X + :I- R-I + :X- iodide R-X + :CN- R-CN + :X- nitrile R-X + :NH3 R-NH2 + HX primary amine R-X + :NH2R´ R-NHR´ + HX secondary amine R-X + :SH- R-SH + :X- thiol R-X + :SR´ R-SR´ + :X- thioether Etc. Best when R-X is CH3 or 1o! SN2
2. dehydrohalogenation of alkyl halides • | | | | • — C — C — + KOH(alc.) — C = C — + KX + H2O • | | • H X • RX: 3o > 2o > 1o • no rearragement • may yield mixtures • Saytzeff orientation • element effect • isotope effect • rate = k [RX] [KOH] • Mechanism = E2
CH3CHCH3 + KOH(alc) CH3CH=CH2 Br isopropyl bromide propylene CH3CH2CH2CH2-Br + KOH(alc) CH3CH2CH=CH2 n-butyl bromide 1-butene CH3CH2CHCH3 + KOH(alc) CH3CH2CH=CH2 Br 1-butene19% sec-butyl bromide + CH3CH=CHCH3 2-butene81%
3. preparation of Grignard reagent • CH3CH2CH2-Br + Mg CH3CH2CH2-MgBr • n-propyl bromide n-propyl magnesium bromide • reduction • CH3CH2CH2-Br + Mg CH3CH2CH2-MgBr • CH3CH2CH2-MgBr + H2O CH3CH2CH3 + Mg(OH)Br • propane • CH3CH2CHCH3 + Sn/HCl CH3CH2CH2CH3 + SnCl2 • Cl • sec-butyl chloride n-butane
Alcohols nomenclature syntheses 1. oxymercuration-demercuration 2. hydroboration-oxidation 3. 4. hydrolysis of some alkyl halides reactions 1. HX 2. PX3 3. dehydration 4. as acids 5. ester formation 6. oxidation
Alcohols, nomenclature CH3 CH3 CH3CHCH2CHCH3 CH3CCH3 OH OH 4-methyl-2-pentanol tert-butyl alcohol 2-methyl-2-propanol 2o 3o CH3 HO-CHCH2CH3 CH3CH2CH2-OH sec-butyl alcohol n-propyl alcohol 2-butanol1-propanol 2o 1o
Alcohols, syntheses • 1. oxymercuration-demercuration: • Markovnikov orientation. • 100% yields. • no rearrangements • CH3CH2CH=CH2 + H2O, Hg(OAc)2; then NaBH4 • CH3CH2CHCH3 • OH
2. hydroboration-oxidation: • Anti-Markovnikov orientation. • 100% yields. • no rearrangements • CH3CH2CH=CH2 + (BH3)2; then H2O2, NaOH • CH3CH2CH2CH2-OH
Reaction of alcohols 1. with HX: R-OH + HX R-X + H2O a) HX: HI > HBr > HCl b) ROH: 3o > 2o > CH3 > 1oSN1/SN2 c) May be acid catalyzed d) Rearrangements are possible except with most 1o alcohols.
CH3CH2CH2CH2-OH + NaBr, H2SO4, heat CH3CH2CH2CH2-Br n-butyl alcohol (HBr) n-butyl bromide 1-butanol 1-bromobutane CH3 CH3 CH3CCH3 + HCl CH3CCH3 OH Cl tert-butyl alcohol tert-butyl chloride 2-methyl-2-propanol 2-chloro-2-methylpropane CH3-OH + HI, H+,heat CH3-I methyl alcohol methyl iodide methanol iodomethane
With PX3 • ROH + PX3 RX • PX3 = PCl3, PBr3, P + I2 • No rearrangements • ROH: CH3 > 1o > 2o • CH3 CH3 • CH3CCH2-OH + PBr3 CH3CCH2-Br • CH3 CH3 • neopentyl alcohol 2,2-dimethyl-1-bromopropane
Dehydration of alcohols • | ||| • — C — C — acid, heat — C = C — + H2O • | | • H OH • ROH: 3o > 2o > 1o • acid is a catalyst • rearrangements are possible • mixtures are possible • Saytzeff • mechanism is E1
CH3CH2-OH + 95% H2SO4, 170oC CH2=CH2 CH3 CH3 CH3CCH3 + 20% H2SO4, 85-90oC CH3C=CH2 OH CH3CH2CHCH3 + 60% H2SO4, 100oC CH3CH=CHCH3 OH + CH3CH2CH=CH2 CH3CH2CH2CH2-OH + H+, 140oC CH3CH2CH=CH2 rearrangement! + CH3CH=CHCH3
As acids. • With active metals: • ROH + Na RONa + ½ H2 • CH3CH2-OH + K CH3CH2-O-K+ + H2 • With bases: • CH4 < NH3 < ROH < H2O < HF • ROH + NaOH NR! • CH3CH2OH + CH3MgBr CH4 + Mg(Oet)Br
Ester formation. • CH3CH2-OH + CH3CO2H, H+ CH3CO2CH2CH3 + H2O • CH3CH2-OH + CH3COCl CH3CO2CH2CH3 + HCl • CH3-OH + CH3SO2Cl CH3SO3CH3 + HCl • Esters are alkyl “salts” of acids.
Oxidation • Oxidizing agents: KMnO4, K2Cr2O7, CrO3, NaOCl, etc. • Primary alcohols: • CH3CH2CH2-OH + KMnO4, etc. CH3CH2CO2H • carboxylic acid • Secondary alcohols: • OH O • CH3CH2CHCH3 + K2Cr2O7, etc. CH3CH2CCH3 • ketone • Teriary alcohols: • no reaction.
Primary alcohols ONLY can be oxidized to aldehydes: CH3CH2CH2-OH + C5H5NHCrO3Cl CH3CH2CHO pyridinium chlorochromatealdehyde or CH3CH2CH2-OH + K2Cr2O7,special conditions
Ethers nomenclature syntheses 1. Williamson Synthesis 2. alkoxymercuration-demercuration reactions 1. acid cleavage
Ethers R-O-R or R-O-R´ Nomenclature: simple ethers are named: “alkyl alkyl ether” “dialkyl ether” if symmetric CH3 CH3 CH3CH2-O-CH2CH3 CH3CH-O-CHCH3 diethyl ether diisopropyl ether
1. Williamson Synthesis of Ethers R-OH + Na R-O-Na+ R-O-R´ R´-OH + HX R´-X (CH3)2CH-OH + Na (CH3)2CH-O-Na+ + CH3CH2CH2-O-CH(CH3)2 CH3CH2CH2-OH + HBr CH3CH2CH2-Br isopropyl n-propyl ether note: the alkyl halide is primary!
CH3CH2CH2-OH + Na CH3CH2CH2-ONa + CH3CH2CH2-O-CH(CH3)2 (CH3)2CH-OH + HBr (CH3)2CH-Br 2o The product of this attempted Williamson Synthesis using a secondary alkyl halide results not in the desired ether but in an alkene! The alkyl halide in a Williamson Synthesis must beCH3 or 1o!
2. alkoxymercuration-demercuration: • Markovnikov orientation. • 100% yields. • no rearrangements • CH3CH=CH2 + CH3CHCH3, Hg(TFA)2; then NaBH4 • OH • CH3CH3 • CH3CH-O-CHCH3 • diisopropyl ether • Avoids the elimination with 2o/3o RX in Williamson Synthesis.
Reactions, ethers: • Acid cleavage. • R-O-R´ + (conc) HX, heat R-X + R´-X • CH3CH2-O-CH2CH3 + HBr, heat 2 CH3CH2-Br
Alkenes nomenclature syntheses 1. dehydrohalogenation of an alkyl halide 2. dehydration of an alcohol 3. dehalogenation of a vicinal dihalide 4. reduction of an alkyne reactions 1. addition of hydrogen 8. hydroboration-oxidation 2. addition of halogens 9. addition of free radicals 3. addition of hydrogen halides 10. addition of carbenes 4. addition of sulfuric acid 11. epoxidation 5. addition of water 12. hydroxylation 6. halohydrin formation 13. allylic halogenation 7. oxymercuration-demercuration 14. ozonolysis 15. vigorous oxidation
Alkenes, nomenclature C3H6 propylene CH3CH=CH2 C4H8 butylenes CH3CH2CH=CH2 α-butylene 1-butene CH3 CH3CH=CHCH3 CH3C=CH2 β-butylene isobutylene 2-butene 2-methylpropene
* * (Z)-3-methyl-2-pentene (3-methyl-cis-2-pentene) * (E)-1-bromo-1-chloropropene *
1. dehydrohalogenation of alkyl halides • | | | | • — C — C — + KOH(alc.) — C = C — + KX + H2O • | | • H X • RX: 3o > 2o > 1o • no rearragement • may yield mixtures • Saytzeff orientation • element effect • isotope effect • rate = k [RX] [KOH] • Mechanism = E2
CH3CHCH3 + KOH(alc) CH3CH=CH2 Br isopropyl bromide propylene CH3CH2CH2CH2-Br + KOH(alc) CH3CH2CH=CH2 n-butyl bromide 1-butene CH3CH2CHCH3 + KOH(alc) CH3CH2CH=CH2 Br 1-butene19% sec-butyl bromide + CH3CH=CHCH3 2-butene81%
dehydration of alcohols: • | ||| • — C — C — acid, heat — C = C — + H2O • | | • H OH • ROH: 3o > 2o > 1o • acid is a catalyst • rearrangements are possible • mixtures are possible • Saytzeff • mechanism is E1
CH3CH2-OH + 95% H2SO4, 170oC CH2=CH2 CH3 CH3 CH3CCH3 + 20% H2SO4, 85-90oC CH3C=CH2 OH CH3CH2CHCH3 + 60% H2SO4, 100oC CH3CH=CHCH3 OH + CH3CH2CH=CH2 CH3CH2CH2CH2-OH + H+, 140oC CH3CH2CH=CH2 rearrangement! + CH3CH=CHCH3
dehalogenation of vicinal dihalides • | | | | • — C — C — + Zn — C = C — + ZnX2 • || • X X • eg. • CH3CH2CHCH2 + Zn CH3CH2CH=CH2 + ZnBr2 • Br Br • Not generally useful as vicinal dihalides are usually made from alkenes. May be used to “protect” a carbon-carbon double bond.
4. reduction of alkyne CH3 H \ / Na or Li C = C anti- NH3(liq) / \ H CH3 trans-2-butene CH3CCCH3 H H \ / H2, Pd-C C = C syn- Lindlar catalyst / \ CH3 CH3 cis-2-butene