200 likes | 334 Views
Structure and Evolution of Cosmological HII Regions. T. Kitayama (Toho University) with N. Yoshida, H. Susa, M. Umemura. Introduction. Feedback from the 1st stars in a Pop III objects - radiation - SN explosion. ⇒ formation of HII regions (Yorke 1986)
E N D
Structure and Evolution of Cosmological HII Regions T. Kitayama (TohoUniversity) with N. Yoshida, H. Susa, M. Umemura
Introduction Feedback from the 1st stars in a Pop III objects - radiation - SN explosion ⇒ formation of HII regions (Yorke 1986) dissociation of molecules(Omukai & Nishi 1999) blow-away of gas (Ferrara 1998) metal enrichment (Gnedin & Ostriker 1997) etc. Great impacts on - reionization history - galaxy formation
Difficulties - Many relevant physical processes radiative transfer, non-equilibrium chemistry, explosive motions…. - Uncertain initial conditions density, temperature, velocity, composition….. This work 1D hydro + radiative transfer + H2 chemistry ⇒ Evolution of HII regions around 1st stars for various Mhalo & ρ(r) Initial conditions for SN feedback studies
HII regions in a uniform medium (1) HII Static solution: photoionization = recombination ⇒Stroemgren sphere (1939) HII
HII regions in a uniform medium (2) Dynamical evolution formation of the HII region →pressure gap →shock →expansion of the HII region Two phases!
HII HII HII HII regions in a uniform medium (3) shock formation rion < Rst vion >> vshock rion > Rst vion ~ vshock R-type front D-type front
Essential ingredients: • hydrodynamics • radiative transfer • time-dependent • reactions • density profile • of the medium • etc. HII regions in a uniform medium (4) Rst
Method Collapsed cloud at z=10 in a ΛCDM universe total M → radius Rvir gas: power-law density profile n∝r-w Ti =1000K, Xe=10-4, XH2=10-4 DM: NFW profile (fixed) M,w: free Radiation from a central massive star 200 Msun, zero metallicity →Nγ(>13.6eV) = 2.3×1050 1/s Teff = 105 K τ= 2.2 Myr (Schaerer 2002) Solve 1D hydro, radiative transfer of UV photons, chemical reactions (e, H, H+, H-, H2, H2+,) & cooling/heating self-consistently
Structure of HII regions (1) n(r) ∝r-w, w=2 M=3×106 Msun high central density →confined I-front →sweep out of gas by shock →prompt ionization D-type →R-type opposite to the uniform medium
Structure of HII regions (2) n(r) ∝r-w, w=2 M=3×107 Msun higher mass → confined shock → no further ionization D-type only
Structure of HII regions (3) n(r) ∝r-w,w=1.5 M=3×107 Msun shallower slope ・lower n at the center ・higher n at the envelope R-type →D-type
n∝r-w w>3/2 n n n∝Rst-3/2 n∝Rst-3/2 n∝r-w w<3/2 r r Density profile and I-front types r<Rst →r>Rst r>Rst →r<Rst D-type →R-type R-type →D-type
Evolution of HII regions (1) I-front n(r) ∝r-w, w=2.0 M<107 Msun fully ionized H2 fully dissociated n0 < 1 cm-3 M>107 Msun almost unionized H2 partially dissoc. n0 > 30 cm-3 shock
Evolution of HII regions (2) I-front M=107 Msun w<1.5 fully ionized H2 fully dissociated n0 <1 cm-3 w>2.0 almost unionized H2 partially dissoc. n0 >10 cm-3 shock
Final HI and H2 fractions • Critical masses • - ionization • ~107 Msun • H2 dissociation • ~108 Msun H2 fraction positive feedback near Mcrit
Fate of collapsed clouds HI & H2 HI H2 dissociated HII
large: R-type small: D-type Fate of collapsed clouds HI & H2 HI H2 dissociated HII
n∝r-w w>3/2 n n n∝Rst-3/2 n∝Rst-3/2 n∝r-w w<3/2 r r Density profile and I-front types r<Rst →r>Rst r>Rst →r<Rst D-type →R-type R-type →D-type
Conclusions Radiative feedback from a massive star in Pop III objects →photoionized & photodissociated HII regions (M<107 Msun) (M<108 Msun) sweep-out of gas by shock down to n < 1 cm-3 Evolution & structure of HII regions sensitive to M & gas density profile (index w) w<1.5 : R-type → D-type w>1.5 : D-type → R-type maintenance/achievement of R-type front is essential!
Future work • Subsequent SN explosion • ← initial conditions from the present work • different z, Mstar, Zstar,….. • dust in HII regions • etc.