1 / 25

Ode aan de cirkel

Ode aan de cirkel. A. Constructies met passer en zonder liniaal B. Magische cirkels als landschapskunst C. Cirkels met verbeterde hoeken D. Cirkels van de tiende hemel Aad Goddijn, Freudenthal Instituut Kaleidoscoop I 5 april 2005. De Emancipatie van de Passer.

emelda
Download Presentation

Ode aan de cirkel

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ode aan de cirkel A. Constructies met passer en zonder liniaal B. Magische cirkels als landschapskunst C. Cirkels met verbeterde hoeken D. Cirkels van de tiende hemel Aad Goddijn, Freudenthal Instituut Kaleidoscoop I 5 april 2005

  2. De Emancipatie van de Passer

  3. De uitvinder van de Passer was … Perdix! Ovidius, Meta- Morphosen Boek VIII, vs. 236-259 1e eeuw

  4. Hij werd, toen hij 't betreurde lichaam van zijn zoon begroef, ontdekt door Perdix, snatervogel, die daar vleugelklappend vanaf een eiketak zijn vreugde uitzong in een lied. Hij was toen nog uniek, een jonggevormde vogel die voordien niet eens bekend was en een blijvend schuldbewijs voor Daedalus. Diens zuster immers had hem ooit haar zoontje als leerling toevertrouwd, niet denkend aan een slechte afloop; een slim, twaalfjarig ventje, altijd klaar om iets te leren. Zo had hij op een keer een vis met stekelrug gezien en met dat beeld voor ogen sneed hij in een scherp stuk ijzer een tandenrij, en vond zo het gebruik uit van de zaag; hij was het ook die voor het eerst twee staafjes in één draaipunt bijeenbracht; zo, terwijl de ene poot blijft staan, beschrijft de tweede 'n cirkel, mits ze maar gelijke afstand houden. Daedalus werd jaloers en duwde hem hals over kop Athene's vrome burcht af, roepend dat hij was gestruikeld. Maar Pallas—hoedster van talent—greep in en maakte hem tot vogel, midden in zijn val kon hij op vleugels vliegen: de eerst zo snelle kracht van zijn verstand verplaatste zich naar vleugelpaar en poten, maar hij hield zijn naam van vroeger. Alleen, hij werd een vogelsoort dat zich niet hoog verheft, geen nesten bouwt tussen de takken in een hoge boomtop, maar fladdert langs de grond; het legt zijn eieren in een heg uit hoogtevrees, omdat het zich de oude val herinnert.

  5. De rechte lijn zaait verdeeldheid. id. I, 125-150 • -

  6. OudeRomeinse passersambachtelijk gebruik,stijf,om maten over te brengen. • -

  7. Raphael, 1509, School van Athene

  8. De vijf Postulaten in ‘De Elementen’ van Euclides(300 v. Chr.) Laat het volgende geeist zijn: • Een rechte lijn tekenen van een punt naar een ander punt. • Een eindige rechte lijn voortzetten in rechte lijn. 3. Een cirkel tekenen met middelpunt en randpunt. • (Dat alle rechte hoeken gelijk zijn. • Dat, als een lijn gesneden wordt door twee andere lijnen en de ingesloten hoeken aan een kant zijn samen minder dan twee rechte hoeken, de twee lijnen (eventueel voortgezet) elkaar snijden aan de kant van die twee ingesloten hoeken.)

  9. Construeren met passer en liniaal • Beginsituatie (minimaal 2 punten) • Teken lijnen en cirkels volgens 1, 2 en 3. • Gebruik de snijpunten als nieuwe punten. WAARSCHUWING: DE PASSER MAG NIET OPGETILD WORDEN

  10. Voorbeeld: Loodlijn uit C op AB ABC.fig • l(A,B) • c(C,A) • Snijden (1,2) • c(A, C) • c(3, C) • Snijden (4, 5) • l(C, 6) • ----------- • Bewijs dat constructie’werkt’. Euclides ‘eist’ het snijden niet, het is bij hem geen axioma.

  11. Hoogtelijnen ‘Aanroep’ eerdere constructies Te bewijzen: Ze gaan door een punt. Bij Euclides alleen construeerbare figuren en bewezen eigenschappen daarvan.

  12. Stelling van Morley (1899) Gegeven: Hoeken A, B, C in 3 gelijke delen verdeeld. …etc. Bewering: PQR is gelijkvormig. Maar: driedeling van een hoek is NIET CONSTRUEERBAAR (Wantzel, 1836) Stelling van Morley wel bewijsbaar met de middelen van Euclides.

  13. Waarschuwing negeren! Verplaats.fig • Stelling: Lijnstukken zijn toch verplaatsbaar. • Gegeven A, B, C. • Construeer een punt D zodat |AD| = |BC| • DEMONSTRATIE! • Nu mag: cirkel(A, BC) • (Geen liniaal gebruikt!)

  14. Mascheroni (1797): Die liniaal mag weg! Wat met liniaal + passer kan, kan met passer alleen.Dit moet gekund worden: A. Gegeven punten A, B, C en D; construeer alleen met de passer het snijpunt van AB en CD. B. Construeer alleen met de passer de snijpunten van een lijn met een cirkel.

  15. B: Snijden van AB en cirkel c • Er is een addertje onder het gras ……

  16. Voorbereidingen • Spiegel punt C in AB (ok?) • Verplaats een lijnstuk AB naar een punt C (ok) • Snijd AB met cirkel met middelpunt op AB. • Tel twee lijnstukken bij elkaar op. • Bepaal vierde evenredige bij gegeven a, b, c.Dwz. Bepaal x zodat a : b = c : x

  17. Snijd AB met cirkel met middelpunt M op AB. • P op de cirkel • Q: Spiegel P in AB • R: Maak parallellogram PQMR (Hoe??) • S: Parm. QPMS • c(S,P) • c(R, Q) • F: snijden 4, 5 • cirk( S, FM) • Cirk (R, FM) • Z: snijden 7, 8. • BEWIJS ??????

  18. AF = AB + CD

  19. a : b = c : x Verhoud.fig • MAC congruent MBD • ABMgelijkv.CDM • CD !!!

  20. A. Snijden van AB en CD • Bepaal EX uit EX : EF = ED : (ED + CF) • Pas Voorbereiding no. 3 toe.

  21. Historisch eerherstel • George Mohr ontdekt 125 jaar eerder dan Macheroni dat alle Euclidische constructie met passer alleen mogelijk zijn. • Zie zijn Euclides Danicus (1675) • Herontdekt door J Hjelmslev in 1928 in een 2ehands boekwinkel,

  22. John Donne (1572-1631) • Such wilt thou be to me, who must, • Like th’ other foot, obliquely run; • Thy firmness makes my circle just, • And makes me end where I begun.

  23. ... • Our two souls therefore, which are one, • Though I must go, endure not yet • A breach, but an expansion, • Like gold to aery thinness beat. • If they be two, they are two so • As stiff twin compasses are two ; • Thy soul, the fix’d foot, makes no show • To move, but doth, if th’ other do. • And though it in the centre sit, • Yet, when the other far doth roam, • It leans, and hearkens after it, • And grows erect, as that comes home. • . • Uit: “A VALEDICTION: FORBIDDING MOURNING”

  24. Lijnen met de passer: Peaucellier • a, b, W vast • Hoe beweegt Y als X beweegt over cirkel c(Z,W) ?? • In rechte lijn !!

  25. Bewijs bij : Peaucellier • Stap 1: WY. WX is constant! • Stap 2.Onderzoek:

More Related