80 likes | 175 Views
A contraction on the plane R 2 is a map f:R 2 → R 2 with the property that there exist a number r such that for any pair of points X, Y in R 2 , distance(f(X),f(Y))<r. distance(X,Y). The smallest r with such a property is called the contraction factor
E N D
A contraction on the plane R2 is a map f:R2→R2 with the property that there exist a number r such that for any pair of points X, Y in R2 , distance(f(X),f(Y))<r. distance(X,Y). The smallest r with such a property is called the contraction factor NOTE: We will work with similarities, which are a particular type of contractions. Iterated functions systems (IFS)
We start with a (compact) set of points P0 and n affine transformations, A1, A2, ..An, which are contractions. (In our examples, P0 is the initial polyogon or the union of the initial polygons) Remark: Many of the results could be reproduced in a more general way, starting with any compact set, and a finite number of contractions. Iterated functions systems (IFS)
P1=A1(P0) U A2(P0) U .. U An(P0) P2=A1(P1) U A2(P1) U .. U An(P1) P3=A1(P2) U A2(P2) U .. U An(P2) ... The “recipe”: We define inductively n. Pn_=A1(P(n-1)) U A2(P(n-1)) U .. U An(P(n-1))
The sequence P0, P1, P2, P3... converges to a unique shape P (of finite extent) invariant under the applications of A1, A2, . , An. In symbols, P=A1(P) U A2(P) U ... An(P). Theorem:
This shape P is called the attractor of the IFS {A1, A2.. An}
When the transformations A1, A2.. An are all affine transformations, they the list of parameters [a1, b1, c1, d1, e1, f1] (param. of A1) [a2, b2, c2, d2, e2, f2] (param. of A2) . . [an, bn, cn, dn, en, fn] (param. of An) are called the IFS parameters of the attractor.
For a self-similar shape made of N copies of itself, each scaled by an affine contraction of contraction factor r, the similarity dimension is log(N)/log(1/r) Definition
Let l1, l2,.. ln be a list of IFS parameters. Suppose they are all correspond to contractions of ratio r. Moreover, assume that there is a polygon P such that the union of the images of P by each of the transformations of the list is “just touching”. Then the similarity dimension of the attractor of the IFS is ln(n)/ln(r). NOTE: “Just touching” means that the sets intersect only in the boundary. Propositon: