730 likes | 1.17k Views
Analysis for Adaptive DOA Estimation with Robust Beamforming in Smart Antenna System. 指導教授:黃文傑 W.J. Huang 研究生 :蔡漢成 H.C. Tsai. Outline. Conception of Smart Antenna Beamforming Method DOA Estimation θ - LMS Algorithm (My Point) Local Minimum problems
E N D
Analysis for Adaptive DOA Estimation with Robust Beamforming in Smart Antenna System 指導教授:黃文傑 W.J. Huang 研究生 :蔡漢成 H.C. Tsai
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm (My Point) • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
Conception of Smart Antenna • There are constructed by some specially geometric antenna array. • It changes the beam-pattern with some different methods. • It increases the CINR and Capacity
Category -1 • Switched Beam System
Category -2 Adaptive Beam System
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
DOA Estimation Beamforming Weighting Summation Beamforming Method
Beamforming Tech. • Conventional Beam-former • Capon’s Beam-former Array Response y(t) Output power P(w)
Y θ (M-1)d X d d Conv. Beamforming & Steering Vector
ULA d = 0.5 λ M = 4、 8、 12
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
DOA Estimation • Conventional • Capon’s • Subspace • MUSIC
DOAEst. u(n)Receiving signal Pattern(0~180) w(0~180)Conventional Conventional DOA Estimation w(n) BeamformingWeighting
DOAEst. u(n)Receiving signal Pattern(0~180) w(0~180)Capon’s Capon’s DOA Estimation w(n) BeamformingWeighting
MUSIC(MUltiple SIgnal Classification ) w(n)Weighting Vector u(n)Receiving signal DOAEst. Eigen decompositionNoise SpaceVn PMUSIC Pattern a(0~180)
Compare the three methods ULA M = 4 d = 0.5λ User’s DOA = 90°、120 ° SNR=10dB
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm (My point) • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
d(n) + u(n) e(n) w(n) y(n) w(n+1) w - LMS w – LMS Algorithm
d(n) 4 x1 e(n) u(n) w(n) w(n+1) y(n) ө(n) ө(n+1) ө- LMS θ- LMS Algorithm +
θ- LMS Algorithm u(n) w(n) wH(n) u(n) -d(n) Cost functionJ(θ) w(n)Weighting Beamforming Weighting by DOA θ0 find DOA θ0
Definition = • Adaptive θ(n) is defined
ULA M = 4 d = 0.5λ DOA= 120 ° Initial DOA = 90 ° Step size = 0.01 SNR =20
ULA M = 4 d = 0.5λ DOA= 0 °~180 ° Initial DOA = 90 ° Step size = 0.01 SNR =20 DOA=90*sin(0:0.01:80*pi) + 90;
Steering Vector Tracking ULA M = 4 d = 0.5λ DOA= 0 °~180 ° Initial DOA = 90 ° Step size = 0.01 “*” steering vector “o” tracking vector DOA=90*sin(0:0.05:80*pi) + 90;
Beampattern Tracking ULA M = 4 d = 0.5λ DOA= 0 °~360 ° Initial DOA = 90 ° Step size = 0.01 “o” DOA DOA=180*sin(0:0.05:80*pi) + 180;
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
Converse to Error Direction ULA M = 4 d = 0.5λ DOA= 90 ° Initial DOA = 120 ° Step size = 0.01
Error pattern d(n d(n ) ) + 4 x1 4 x1 e(0~180) x x (n (n ) ) w(0~180)
Cost function ULA M = 4 d = 0.5λ DOA= 90 °
DOA=90 ° Error Surface (DOA ) ULA M = 4 d = 0.5λ DOA= 0 °~180 °
d=0.5 λ Error Surface (d ) ULA M = 4 d = 0~1λ DOA= 90 °
M=4 Error Surface (M ) ULA M = 2 ~8 d = 0.5λ DOA= 90 °
d(n) 2 x1 e(n) u(n) + w(n) w(n+1) y(n) ө(n) ө(n+1) ө- LMS 2 Antsθ- LMS Algorithm
Error Surface (M=2 d=0.5 ) ULA M = 2 d = 0.5λ DOA= 90 °
Error Surface (M=2 d=0.25 ) ULA M = 2 d = 0.25λ DOA= 90 °
Simulation (1) ULA M = 2 d = 0.25λ DOA= 5 ° Initial DOA = 175 ° SNR = 30 dB
Simulation (2) ULA M = 2 d = 0.25λ DOA= 170 ° Initial DOA = 5 ° SNR = 30dB
2 – 4 “θ-LMS” 2 antennas “θ-LMS” 4 antennas “θ-LMS” Initial θ
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
Noise problem • θ- LMS Algorithm needs high SNR level. • High noise level brings the DOA estimation result worse. • The DOA estimation error will cause the terrible performance • We use the Robust Beamforming Method to conquer the estimation error problem.
The flow chart of Robust Beamforming Ref : Riba J., Goldberg J., Vazquez G., “Robust Beamforming for Interference Rejection in Mobile Communications”, Signal Processing, IEEE Transactions on
BER Analysis BPSK ULA M = 4 d = 0.5 λ DOA = 90°
Outline • Conception of Smart Antenna • Beamforming Method • DOA Estimation • θ- LMS Algorithm • Local Minimum problems • θ- LMS Algorithm with Robust Beamforming • Conclusion
Conclusion • DOA is an important parameter for beamforming system. • But, the MUSIC algorithm is complex. • The new method “ө - LMS” is simpler to realized • Robust Beamforming can repair the fault of “ө - LMS”
Future Work • Noise and channel problem • Multi-user problems • SINR Analysis • Multi-path & DOA distribution • Moving Source analysis • Performance Analysis(User # 、 DOA、SNR 、 Beamforming method、Antenna # …etc.) • Adaptive Analysis(Step-size Moving DOA、SNR 、other adaptive structure)