1 / 55

SMart Antenna systems for Radio Transceivers (SMART)

SMart Antenna systems for Radio Transceivers (SMART).

shay-cannon
Download Presentation

SMart Antenna systems for Radio Transceivers (SMART)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SMart Antenna systems for Radio Transceivers (SMART) Arjan MeijerinkTE Presentation – May 27 2008University of TwenteFaculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)Centre for Telematics and Information Technology (CTIT)Telecommunication Engineering Group (TE)a.meijerink@utwente.nl

  2. Contents 1. Introduction; 2. System overview & requirements; • Optical beamformer: • Conclusions & future work • Questions MWP » MWP in PAAs » SMART » Conclusions » Questions

  3. 1. Introduction: aim and purpose Project aim: Development of a novel Ku-band antenna for airborne reception of satellite signals , using a broadband conformal phased array Purpose: • Live weather reports; • High-speed Internet access; • Live television through Digital VideoBroadcasting via satellite (DVB-s) MWP » MWP in PAAs » SMART » Conclusions » Questions»

  4. 1. Introduction: partners & funding Project partners: Funding: The SMART project is part of the Euripides project SMART (Partners: EADS, CNAM, Radiall, CIMNE, Moyano) MWP » MWP in PAAs » SMART » Conclusions » Questions»

  5. 1. Introduction: specific targets Specific project targets: • Conformal phased array structure definition; • Broadband stacked patch antenna elements; • Broadband integrated optical beamformerbased on optical ring resonatorsin CMOS-compatible waveguide technology; • Experimental demonstrator. MWP » MWP in PAAs » SMART » Conclusions » Questions»

  6. 2. System overview & requirements 8x8 8x1 gain 40x40 optical beam width Antenna array RF front-end beamformer to receiver(s) with amplitude tapering scan angle Frequency range: 10.7 – 12.75 GHz (Ku band) Polarization: 2 linear (H/V) Scan angle: -60 to +60 degrees Gain: > 32 dB Selectivity: << 2 degrees No. elements: ~1600 Element spacing: ~/2 (~1.5 cm, or ~50 ps) Maximum delay: ~2 ns Delay compensation by phase shifters?  beam squint at outer frequencies!  (Broadband) time delay compensation required ! 1  Continuous delay tuning required ! MWP » MWP in PAAs » SMART » Conclusions » Questions»

  7. controlblock 3. Optical beamformer: overview plane position & angle • Outline: • Ring resonator-based delays; • OBFN structure • OBFN control block; • E/O & O/E conversion; • System performance. antenna viewing angle feedbackloop Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) ? ? ? tunable broadband delays& amplitude weights. NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»

  8. Periodic transfer function; Flat magnitude response. Phase transition aroundresonance frequency; Bell-shaped group delay response; Trade-off: delay vs. bandwidth  f 3. Optical beamformer: ORR-based delays Single ring resonator:  Phase T : Round trip time; : Power coupling coefficient;  : Additional phase.  Group delay  f MWP » MWP in PAAs » SMART » Conclusions » Questions»

  9. Rippled group delay response; Enhanced bandwidth; Trade-off: delay vs. bandwidth vs. delay ripple vs. no. rings; bandwidth ripple 3. Optical beamformer: ORR-based delays Cascaded ring resonators:  Group delay  f Or in other words: for given delay ripple requirements: Required no. rings is roughly proportional to product of required optical bandwidth and maximum delay MWP » MWP in PAAs » SMART » Conclusions » Questions»

  10. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»

  11. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»

  12. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»

  13. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»

  14. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output MWP » MWP in PAAs » SMART » Conclusions » Questions»

  15. 3. Optical beamformer: 8x1 OBFN 8x1 Optical beam forming network (OBFN) combining networkwith tunable combiners(for amplitude tapering) 8 inputswithtunabledelays 1 output 12 rings 7 combiners  31 tuning elements MWP » MWP in PAAs » SMART » Conclusions » Questions»

  16. 3. Optical beamformer: 8x1 OBFN chip Single-chip 8x1 OBFN realized inCMOS-compatible optical waveguide technology TriPleX Technology 1 cm 4.85 cm x 0.95 cm Heater bondpad MWP » MWP in PAAs » SMART » Conclusions » Questions»

  17. 3. Optical beamformer: OBFN measurements OBFN Measurement results L. Zhuang et al., IEEE Photonics Technology Letters, vol. 19,no. 15, Aug. 2007 1 ns ~ 30 cm delay distance in vacuum MWP » MWP in PAAs » SMART » Conclusions » Questions»

  18. 3. Optical beamformer: OBFN control block • Outline: • Ring resonator-based delays; • OBFN structure; • OBFN control block; • E/O & O/E conversion; • System performance. plane position & angle antenna viewing angle feedbackloop controlblock Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»

  19. 3. Optical beamformer: OBFN control block beam angle NLR delays + amplitudes calculation ARM7microprocessor chip parameters (isand is) DA conversion & amplification heater voltages MWP » MWP in PAAs » SMART » Conclusions » Questions»

  20. 3. Optical beamformer: OBFN control block 1 2 3 Td  ( f )  1 2 3 fR,3 fR,1 fR,2 • Which settings for the isand is are optimal? • Metric: MSE of phase response in band of interest • Non-linear programming solver on PC (Matlab) MWP » MWP in PAAs » SMART » Conclusions » Questions»

  21. 3. Optical beamformer: OBFN control block Result: data set with required values of isand is as a function of required delay values (Tjs) Interpolation formulas:  Store coefficients ai, ..., hiin microprocessor and calculate isand is “realtime” (<< 1 msec.) MWP » MWP in PAAs » SMART » Conclusions » Questions»

  22. 3. Optical beamformer: OBFN control block • Outline: • Ring resonator-based delays; • OBFN structure; • OBFN control block; • E/O & O/E conversion; • System performance. plane position & angle antenna viewing angle feedbackloop controlblock Antenna elements RFfront-end OBFN chip E/O O/E to receiver(s) NLR & Cyner UT/TE & LioniX MWP » MWP in PAAs » SMART » Conclusions » Questions»

  23. 3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode DM laser OBFN chirp! TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  24. 3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode CW laser mod. OBFN beat noise! TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  25. 3. Optical beamformer: E/O and O/E conversion • E/O and O/E conversions? • low optical bandwidth; • high linearity; • low noise RF front-end LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  26. spectrum frequency 3. Optical beamformer: E/O and O/E conversion 2 x 12.75 = 25.5 GHz 12.75 GHz RF front-end 10.7 GHz LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  27. spectrum frequency 3. Optical beamformer: E/O and O/E conversion 2 x 2.15 = 4.3 GHz 2150 MHz RF front-end 950 MHz LNB LNA photo-diode mod. OBFN CW laser TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  28. spectrum frequency 3. Optical beamformer: E/O and O/E conversion single-sideband modulation withsuppressed carrier (SSB-SC) • Implementation of optical SSB modulation? • Optical heterodyning; • Phase shift method; • Filter-based method. RF front-end 1.2 GHz LNB photo-diode • Balanced optical detection: • cancels individual intensity terms; • mixing term remains; • reduces laser intensity noise; • enhances dynamic range. SSB-SC mod. filter OBFN CW laser filter TIA electrical » optical optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  29. spectrum frequency 3. Optical beamformer: E/O and O/E conversion single-sideband modulation withsuppressed carrier (SSB-SC) • Filter requirements: • Broad pass band and stop band (1.2 GHz); • 1.9 GHz guard band; • High stop band suppression; • Low pass band ripple and dispersion; • Low loss; • Compact; • Same technology as OBFN. RF front-end 1.2 GHz LNB mod. OBFN CW laser filter TIA electrical » optical 1 chip ! optical » electrical MWP » MWP in PAAs » SMART » Conclusions » Questions»

  30. 3. Optical beamformer: E/O and O/E conversion Possible filter structures: Mach-Zehnder Interferometer (MZI): Ring resonator-based filters: Multi-stage MZI: MZI + ring: MWP » MWP in PAAs » SMART » Conclusions » Questions»

  31. 3. Optical beamformer: E/O and O/E conversion Optical sideband filter chip in the same technology as the OBFN 5 mm MZI + Ring MWP » MWP in PAAs » SMART » Conclusions » Questions»

  32. 3. Optical beamformer: E/O and O/E conversion Measured filter response 3 GHz Bandwidth—Suppression Tradeoff 14 GHz 20 GHz 25 dB FSR 40 GHz MWP » MWP in PAAs » SMART » Conclusions » Questions»

  33. f1 f2 f1  f  f  f MZM OSBF SA fiber coupler  f RF f1 – f2 f2  f  f  f 3. Optical beamformer: E/O and O/E conversion Spectrum measurement of modulated optical signal Optical heterodyning technique: MWP » MWP in PAAs » SMART » Conclusions » Questions»

  34. 3. Optical beamformer: E/O and O/E conversion Spectrum measurement of modulated optical signal MWP » MWP in PAAs » SMART » Conclusions » Questions»

  35. MZM OSBF SA fiber coupler RF f1 – f2  f 3. Optical beamformer: E/O and O/E conversion Further demonstration of chip functionality OBFN Next steps: • Demonstrate optical homodyning by balanced detection; • Demonstrate delay of broadband RF signal in OBFN; • Combine multiple signals in OBFN by optical phase-locking . MWP » MWP in PAAs » SMART » Conclusions » Questions»

  36. 3. Optical beamformer: noise performance Losses, noise, and distortion sky noise LNB thermal noise = RF noise + TIA thermalnoise non-linear modulator optical losses shot noise phase &intensitynoise mod. OBFN filter MWP » MWP in PAAs » SMART » Conclusions » Questions»

  37. 3. Optical beamformer: noise performance MWP » MWP in PAAs » SMART » Conclusions » Questions»

  38. 3. Optical beamformer: noise performance Pin E/O OpticalBeamFormingNetwork RF1 Pout O/E RF2 RF3 analog optical link, multiport RF component, two-port • Equivalent antenna gain • antenna patterns • number of antennas • amplitude tapering • Noise temperature • sky noise • receiver noise (LNB + OBF) Pin / M equivalent antenna Pout equivalentreceiver noise temp. gain MWP » MWP in PAAs » SMART » Conclusions » Questions»

  39. 4. Conclusions & future work Conclusions: • A novel optical beamformer concept employinga fully integrated, ring resonator-based OBFNand filter-based optical SSB-SC modulationwas introduced and partly demonstrated; • Main advantages of this concept are: • low loss and large instantaneous bandwidth; • continuous tunability (high resolution); • relatively compact and light-weight realization; • inherent immunity to EMI; • potential for integration with optical distribution network; • The dynamic range of the phased array receiver system is not significantly reduced by the optical beamformer. MWP » MWP in PAAs » SMART » Conclusions » Questions»

  40. 4. Conclusions & future work Future work: • Characterize demonstrator chipset; • Finalize software for control block; • Build up beamformer demonstrator; • Integrate with rest of system (array + front-end); • Scale up demonstrator to >1000 antenna elements. MWP » MWP in PAAs » SMART » Conclusions » Questions»

  41. Acknowledgement NLR: Jaco Verpoorte Pieter Jorna Adriaan Hulzinga Guus Vos Rene Eveleens Harm Schippers Cyner Substrates: Marc Wintels Hans van Gemeren UT/TE: Chris Roeloffzen Leimeng Zhuang David Marpaung Bas den Uyl Mark Ruiter Timon Vrijmoeth Jorge Pena Hevilla Robbin Blokpoel Tomas Jansen Roland Meijerink Jan-Willem van ‘t Klooster Liang Hong Eduard Bos Wim van Etten LioniX: Arne Leinse Albert Borreman Marcel Hoekman Douwe Geuzebroek Robert Wijn Rineke Groothengel Melis Jan Gilde René Heideman Hans van den Vlekkert MWP » MWP in PAAs » SMART » Conclusions » Questions»

  42. Questions Questions? MWP » MWP in PAAs » SMART » Conclusions » Questions»

  43. App. A: Phased Array Antenna : single antenna MWP » MWP in PAAs » SMART » Conclusions » Questions»

  44. App. A: Phased Array Antenna: multiple antennas MWP » MWP in PAAs » SMART » Conclusions » Questions»

  45. App. A: Phased Array Antenna: beam steering MWP » MWP in PAAs » SMART » Conclusions » Questions»

  46. App. A: Phased Array Receive Antenna: delays 2T T MWP » MWP in PAAs » SMART » Conclusions » Questions»

  47. App. A: Phased array antenna: beamforming network antenna 1 + T antenna 2 + 2T antenna 3 MWP » MWP in PAAs » SMART » Conclusions » Questions»

  48. App. A: Phased array antenna: beamforming network Challenges: • Small beam width; • High gain; • Low sidelobes; • Agile steering; • High bandwidth; • High resolution; • Low costs. • High number of antenna elements; • Amplitude tapering; • Fast tuning; • True time delays; • Continuous tunability; • High integration level. 2T T combiner to receiver MWP » MWP in PAAs » SMART » Conclusions » Questions»

  49. RF in E/O optical circuit O/E RF out RF in microwave circuit RF out photonic control App. B: Microwave Photonics: what, and why? What? Microwave Photonics (MWP): [Capmany & Novak, Nature Photonics 2007] the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems 1. Performing microwave functions in optical domain; 2. Control microwave components by means of photonics. MWP » MWP in PAAs » SMART » Conclusions » Questions»

  50. App. B: Microwave Photonics: what, and why? What? • Signal generation, for instance • RF carriers; • ultra-short (UWB) pulses; • Signal transport/distribution, for instance • sub-carrier multiplexing (SCM) for CATV distribution; • antenna remoting for e.g. RADAR; • Radio-over-Fiber distribution in wireless access networks; • Signal processing, for instance • high-frequency filtering; • up/down conversion; • A/D conversion; • beamforming for phased array antennas. MWP » MWP in PAAs » SMART » Conclusions » Questions»

More Related