250 likes | 444 Views
Cyprichová Simona. M – Rv 4. ročník. Práce s talentovanou mládeží v matematice 6. a 7. ročník. Úvod. Talentovaný žák svými znalostmi přesahuje stanovené požadavky odpovídá rychle a s jistotou snadno a rychle chápe nové učivo objevují se u něj tvořivé odpovědi
E N D
Cyprichová Simona M – Rv 4. ročník
Úvod Talentovaný žák • svými znalostmi přesahuje stanovené požadavky • odpovídá rychle a s jistotou • snadno a rychle chápe nové učivo • objevují se u něj tvořivé odpovědi • spontánně se zajímá o další informace • má potřebu své znalosti a dovednosti projevit
Matematika je jeden z nejdůležitějších oborů. Bez znalost matematiky se nemohou rozvíjet ostatní obory. Od jazyků přes obory přírodní a společenské až po výchovy.Je důležité podchytit zájem dětí a podporovat jej.Rozvíjet talent dětí je možné jen v úzké spolupráci rodiny a školy.Asi 20 % dětí je nadaných a těm se musíme věnovat.
Možnosti rozvoje matematického talentu : • víceletá gymnázia • třídy s rozšířenou výukou matematiky • třídy s rozšířenou výukou informatiky • volbou volitelných a nepovinných předmětů • v rámci diferenciace v normálních třídách • kroužky v Domech dětí a mládeže • školy v přírodě • matematické tábory
Soutěže: • Matematická soutěž • Pythagoriáda • Matematická olympiáda • Klokan
Obsah: • Doplňující učivo • Rozšiřující učivo • Příklady z rekreační a zájmové matematiky
Tématické okruhy:6. ročník • Osová souměrnost • Desetinná čísla • Úhel a jeho velikost • Dělitelnost přirozených čísel • Trojúhelník • Objem a povrch kvádru a krychle
7. ročník • Zlomky • Shodnost, středová souměrnost • Celá a racionální čísla • Středová souměrnost • Racionální čísla • Poměr, přímá a nepřímá úměrnost • Čtyřúhelníky, hranoly • Procenta • Hranoly, objem a povrch
6. RočníkDesetinná čísla Příklad: Zvýší-li se teplota železné tyče dlouhé 10 m o 5°C, prodlouží se tyč o 0,6 mm. Vyjádřete desetinným číslem délku tyče v milimetrech při postupném zvyšování teploty o 5°C, 10°C, 15°C. Řešení: 10 m + 5°C : 10 000 + 1 * 0,6 = 10 000,6 mm 10 m + 10°C : 10 000 + 2 * 0,6 = 10 001,2 mm 10 m + 15°C : 10 000 + 3 * 0,6 = 10 001,8mm
7. RočníkProcenta Příklad: Vysavač byl z původních 2 050 Kč nejprve zlevněn o 12 %, později byla jeho cena zvýšena o 16 %. Kolik korun vysavač potom stál? Řešení: 2050 Kč – 12 % : 2050 * 0,88 = 1804 Kč 1804 Kč + 16 % : 1804 * 1,16 = 2092,60 Kč Po zlevnění a následném zdražení stál vysavač 2092,60 Kč.
Příklad: Ve kterém roce se narodil žijící muž, je-li jeho věk 2022 roků. Ve které číselné soustavě to platí? Řešení: (2022) III = 2*3*3*3+2*3+2 = 54+6+2 = 62 (2022) IV = 2*4*4*4+2*4+2 = 2*64+8+2 = 138 2006 – 62 = 1944 Muž se narodil v roce 1944 a daný vztah platí v soustavě trojkové.
Veselá matematika Příklady: 1) Hejno hus přechází přes most tak, že jedna jde přede dvěma, druhá mezi dvěma a třetí za dvěma. Kolik hus jde přes most? Řešení: Přes most jdou tři husy. 2) Kolik koček je v místnosti, jestliže v každém ze čtyř rohů sedí jedna kočka, proti každé z nich sedí tři kočky a na ocase každé z nich sedí jedna kočka. Řešení: V místnosti sedí čtyři kočky. Každá kočka si sedí na vlastním ocase.
Sudoku – jsou křížovky beze slov Pravidla pro luštění: Úkolem luštitele je v co nejkratším čase doplnit prázdná místa v tabulce. Do každého z devíti čtverců, řádků a sloupců se musí vepsat číslice od jedné do devíti tak, aby se zároveň žádná z číslic v daném čtverci, řádku či sloupci neopakovala. Každý hlavolam má jen jedno řešení. Pomůckou pro luštitele je papír, tužka a guma.
Algebrogramy – jsou číselné rébusy Podmínka: Každé písmeno zastupuje určitou číslici tak, aby vyhovovala naznačeným početním operacím. Příklad: A B C D B C D C D D 2 2 2 2
Řešení: A= 1, B= 5, C= 7, D= 3 1 5 7 3 5 7 3 7 3 3 2 2 2 2
Zebra Příklad: Pánové Záruba, Novotný, Petrů a Vyskočil vlastními jmény Martin, Jiří, Arnošt a Hubert, se rozhodli, že vezmou své rodiny na dovolenou. Každý z nich cestoval na jiné místo: Tahiti, Florida, Split a Porto. Jeden jel automobilem, druhý lodí, třetí vlakem a čtvrtý letadlem.
Podmínky: • Jiří si chtěl cestou na dovolenou vyzkoušet své nové auto. • Pana Petrů to táhlo na Jadran, ale rozhodně nechtěl zažít kolony aut na cestách. • Hubert, který se jmenuje Záruba, nesnášel let letadlem. • Dovolená na Tahiti byla Arnoštovým vyplněným snem. • Letadlem cestoval pan Novotný. • Martin miluje jízdu vlakem. • Na Floridu se muselo plavit lodí. • Pan Petrů nebyl Jiří.
Seznam použité literatury: - HERMAN, J. aj. Matematika – dělitelnost. Praha : Prometheus, 1994 - HERMAN, J aj. Matematika – úměrnosti. Praha: Prometheus, 1998 - CIHLÁŘ, J. aj. Matematika 6. Praha : Pythagoras Publishing, 1997 - CIHLÁŘ, J. aj. Matematika 7. Praha: Pythagoras Publishing, 1998 - LOUKOTA, J. Veselá matematika. Olomouc : Votobia, 1998 - BOKŠTEFL, L. 100 + 1 Sudoku. Olomouc : Votobia, 2005 - BĚLOUN, F. aj. Sbírka úloh z matematiky pro ZŠ. Praha : SPN, 1993 - KRČMÁŘ, J. aj. 5 až 9 sbírka slovních úloh z matematiky. Praha: Sobotáles, 1997