1 / 9

สูตรคำนวณราคาตราสารหนี้ประเภทจ่ายดอกเบี้ยลอยตัว (Floating Rate Note)

สูตรคำนวณราคาตราสารหนี้ประเภทจ่ายดอกเบี้ยลอยตัว (Floating Rate Note). เรื่องเดิม. ธปท. มีแผนจะออกพันธบัตร ธปท.แบบอัตราดอกเบี้ยลอยตัว มีวัตถุประสงค์เพื่อ 1. พัฒนาตลาดตราสารหนี้ โดยเพิ่มทางเลือกให้นักลงทุน 2 . ส่งเสริมการใช้ BIBOR เป็นอัตราดอกเบี้ยอ้างอิง.

Download Presentation

สูตรคำนวณราคาตราสารหนี้ประเภทจ่ายดอกเบี้ยลอยตัว (Floating Rate Note)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. สูตรคำนวณราคาตราสารหนี้ประเภทจ่ายดอกเบี้ยลอยตัว (Floating Rate Note)

  2. เรื่องเดิม • ธปท. มีแผนจะออกพันธบัตรธปท.แบบอัตราดอกเบี้ยลอยตัว • มีวัตถุประสงค์เพื่อ 1. พัฒนาตลาดตราสารหนี้ โดยเพิ่มทางเลือกให้นักลงทุน 2. ส่งเสริมการใช้ BIBOR เป็นอัตราดอกเบี้ยอ้างอิง

  3. Convention การคำนวณความสัมพันธ์ของราคา และ DM ของ BOT’s FRN(Based on ISMA’s concept) + - 1 n ( I2 QM ) n 1 - å i ö R v v = + × + + æ ) ( + 1 f k I1 × × DM P ç 1 h è ø = 100 1 i I +QM + R 2 k I +QM I +QM I +QM I +QM 2 2 2 2 Settlement I + DM I + DM I + DM I + DM I + DM 2 2 2 2 I1 + DM 2 Discount ครั้งที่ 2 Discount ครั้งที่ 1

  4. ความสัมพันธ์ของราคา และ DM ของ BOT’s FRN - 1 n ( I ) + QM n - 2 1 å æ ( ) ö × = + + i DM + I1 + R P 1 f k v v × ç × 1 h è ø 100 = 1 i P = gross price (clean price บวกกับ accrued interest) I1 = current interpolated rate for period from settlement date to the next coupon date (linear interpolation of current reference rates) I2 = current reference rate for the FRN’s payment tenor (e.g. current 3M- BIBOR, current 6M- BIBOR) f1 = สัดส่วนของปีจาก settlement date จนถึงวันจ่ายคูปองงวดถัดไปตาม Actual/365 เช่นจำนวนวันตั้งแต่ วัน settlement date ถึงวันจ่ายคูปองงวดถัดไปเท่ากับ 20 วันจะได้ f1= 20/365 เป็นต้น k = คูปองในงวดถัดไป (ซึ่งได้กำหนดไว้เรียบร้อยแล้ว) n = จำนวนครั้งของการจ่ายคูปองในอนาคต QM = quoted margin h = จำนวนครั้งการจ่ายคูปองต่อปี R = มูลค่าไถ่ถอนคืน v = discounting factor ในที่นี้เท่ากับ 1/(1 + (I2+DM)/100h) DM = discounted margin

  5. Linear interest rate Interpolation ( I1 ) I 1 t1<tm<t2 andr1< I1< r2 I1= r1 + ( r2-r1 ) * (tm-t1) (t2-t1) ทั้งนี้I1จะ rounding ครั้งเดียวในขั้นตอนสุดท้ายโดยให้มีทศนิยม 5 ตำแหน่ง

  6. ตัวอย่าง:Linear interest rate Interpolation ( I1 ) Trade Date = 20/11/2006 ; Settlement Date = 22/11/2006 - 3M-BIBOR = 5.2525 (22/2/2007) - 6M-BIBOR = 5.275 (22/5/2007) Next-Coupon = 27/3/2007 I1 = 5.2525 + {(5.275 - 5.2525)*(33/89)} = 5.26084 (ทศนิยม 5 ตำแหน่ง)

  7. ตัวอย่าง: DM to Price Conversion THB FRN อายุ 3 ปีออกจำหน่าย 27 กันยายน 2548 จ่ายดอกเบี้ยทุกๆ 6 เดือนในวันที่ 27 มีนาคมและ 27 กันยายนของทุกปีที่ 6MBIBOR+10 bps และครบกำหนดไถ่ถอนวันที่ 27 กันยายน 2551 (Redemption at Par = 100) ราคา trade date 20 พฤศจิกายน 2549 settlement 22 พฤศจิกายน 2549 ที่ DM = 20 bps เท่ากับ ? Gross Price = 100.707211 AI = 0.838538 Clean Price = 99.868673

  8. BIBOR

  9. BIBOR

More Related